您好,欢迎访问三七文档
高中数学教案必修1教学互动可以增进师生感情,激发学生的学习兴趣,提高学生的抽象、概括、分析和综合能力。我们来看看高中数学教案必修1!欢迎咨询!高中数学教案必修一一、教学目标1知识与技能〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件〈2〉理解函数极值的概念,会用导数求函数的极大值与极小值2过程与方法结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。3情感与价值感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。二、重点:利用导数求函数的极值难点:函数在某点取得极值的必要条件与充分条件三、教学基本流程回忆函数的单调性与导数的关系,与已有知识的联系提出问题,激发求知欲组织学生自主探索,获得函数的极值定义通过例题和练习,深化提高对函数的极值定义的理解四、教学过程〈一〉创设情景,导入新课1、通过上节课的学习,导数和函数单调性的关系是什么?(提问C类学生回答,A,B类学生做补充)函数的极值与导数教案2、观察图1.3.8表示高台跳水运动员的高度h随时间t变化的函数函数的极值与导数教案=-4.9t2+6.5t+10的图象,回答以下问题函数的极值与导数教案函数的极值与导数教案函数的极值与导数教案函数的极值与导数教案函数的极值与导数教案函数的极值与导数教案函数的极值与导数教案(1)当t=a时,高台跳水运动员距水面的高度,那么函数函数的极值与导数教案在t=a处的导数是多少呢?(2)在点t=a附近的图象有什么特点?(3)点t=a附近的导数符号有什么变化规律?共同归纳:函数h(t)在a点处h/(a)=0,在t=a的附近,当t0;当ta时,函数函数的极值与导数教案单调递减,函数的极值与导数教案3、对于这一事例是这样,对其他的连续函数是不是也有这种性质呢?探索研讨函数的极值与导数教案1、观察1.3.9图所表示的y=f(x)的图象,回答以下问题:函数的极值与导数教案(1)函数y=f(x)在a.b点的函数值与这些点附近的函数值有什么关系?(2)函数y=f(x)在a.b.点的导数值是多少?(3)在a.b点附近,y=f(x)的导数的符号分别是什么,并且有什么关系呢?2、极值的定义:我们把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值;点b叫做函数y=f(x)的极大值点,f(a)叫做函数y=f(x)的极大值。极大值点与极小值点称为极值点,极大值与极小值称为极值.3、通过以上探索,你能归纳出可导函数在某点x0取得极值的充要条件吗?充要条件:f(x0)=0且点x0的左右附近的导数值符号要相反4、引导学生观察图1.3.11,回答以下问题:(1)找出图中的极点,并说明哪些点为极大值点,哪些点为极小值点?(2)极大值一定大于极小值吗?5、随堂练习:如图是函数y=f(x)的函数,试找出函数y=f(x)的极值点,并指出哪些是极大值点,哪些是极小值点.如果把函数图象改为导函数y=函数的极值与导数教案的图象?函数的极值与导数教案讲解例题例4求函数函数的极值与导数教案的极值教师分析:①求f/(x),解出f/(x)=0,找函数极点;②由函数单调性确定在极点x0附近f/(x)的符号,从而确定哪一点是极大值点,哪一点为极小值点,从而求出函数的极值.学生动手做,教师引导解:∵函数的极值与导数教案∴函数的极值与导数教案=x2-4=(x-2)(x+2)令函数的极值与导数教案=0,解得x=2,或x=-2.函数的极值与导数教案函数的极值与导数教案下面分两种情况讨论:(1)当函数的极值与导数教案0,即x2,或x(2)当函数的极值与导数教案当x变化时,函数的极值与导数教案,f(x)的变化情况如下表:x(-∞,-2)-2(-2,2)2(2,+∞)函数的极值与导数教案+0_0+f(x)单调递增函数的极值与导数教案函数的极值与导数教案单调递减函数的极值与导数教案单调递增函数的极值与导数教案因此,当x=-2时,f(x)有极大值,且极大值为f(-2)=函数的极值与导数教案;当x=2时,f(x)有极小值,且极小值为f(2)=函数的极值与导数教案函数函数的极值与导数教案的图象如:函数的极值与导数教案归纳:求函数y=f(x)极值的方法是:函数的极值与导数教案1求函数的极值与导数教案,解方程函数的极值与导数教案=0,当函数的极值与导数教案=0时:(1)如果在x0附近的左边函数的极值与导数教案0,右边函数的极值与导数教案(2)如果在x0附近的左边函数的极值与导数教案0,那么f(x0)是极小值课堂练习1、求函数f(x)=3x-x3的极值2、思考:已知函数f(x)=ax3+bx2-2x在x=-2,x=1处取得极值,求函数f(x)的解析式及单调区间。C类学生做第1题,A,B类学生在第1,2题。课后思考题1、若函数f(x)=x3-3bx+3b在(0,1)内有极小值,求实数b的范围。2、已知f(x)=x3+ax2+(a+b)x+1有极大值和极小值,求实数a的范围。课堂小结1、函数极值的定义2、函数极值求解步骤3、一个点为函数的极值点的充要条件。作业P325①④教学反思本节的教学内容是导数的极值,有了上节课导数的单调性作铺垫,借助函数图形的直观性探索归纳出导数的极值定义,利用定义求函数的极值.教学反馈中主要是书写格式存在着问题.为了统一要求主张用列表的方式表示,刚开始学生都不愿接受这种格式,但随着几道例题与练习题的展示,学生体会到列表方式的简便,同时为能够快速判断导数的正负,我要求学生尽量把导数因式分解.本节课的难点是函数在某点取得极值的必要条件与充分条件,为了说明这一点多举几个例题是很有必要的.在解答过程中学生还暴露出对复杂函数的求导的准确率比较底,以及求函数的极值的过程板书仍不规范,看样子这些方面还要不断加强训练函数的极值与导数教案研讨评议教学内容整体设计合理,重点突出,难点突破,充分体现教师为主导,学生为主体的双主体课堂地位,充分调动学生的积极性,教师合理清晰的引导思路,使学生的数学思维得到培养和提高,教学内容容量与难度适中,符合学情,并关注学生的个体差异,使不同程度的学生都得到不同效果的收获。高中数学教案必修1二一、说教材1.从在教材中的地位与作用来看《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.2.从学生认知角度看从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错.3.学情分析教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨.4.重点、难点教学重点:公式的推导、公式的特点和公式的运用.教学难点:公式的推导方法和公式的灵活运用.公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点.二、说目标知识与技能目标:理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题.过程与方法目标:通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.情感与态度价值观:通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点.三、说过程学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:1.创设情境,提出问题在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求.西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格.国王令宫廷数学家计算,结果出来后,国王大吃一惊.为什么呢?设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点.此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数.带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路给予肯定.设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍.同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔.2.师生互动,探究问题在肯定他们的思路后,我接着问:1,2,22,…,263是什么数列?有何特征?应归结为什么数学问题呢?探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式.比较(1)(2)两式,你有什么发现?设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机.经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:.老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心.3.类比联想,解决问题这时我再顺势引导学生将结论一般化,这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导.设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感.对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础.)再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用.4.讨论交流,延伸拓展高中数学教案必修11三一、说课分析1.《指数函数》在教材中的地位、作用和特点《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重
本文标题:高中数学教案必修1
链接地址:https://www.777doc.com/doc-9222341 .html