您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 公司方案 > 发动机激励的整车振动
1发动机激励的整车振动MotorerregteFahrzeugschwingungen车辆行驶在平坦的路面上或怠速运转时,只有发动机本身是激振振源.在发动机中,准确地说是在往复活塞式发动机中,由于反复做上下运动的活塞和燃烧过程,产生了附加力和扭矩,它们通过动力总成悬置(主要是橡胶元件)激发汽车底盘的振动。由此产生的振动和噪声将对车箱内乘员产生不利影响。下面首先介绍激振源和激励振动的成因,接着是激励振动的影响,最后讲述连接作用在发动机和底盘之间的动力总成悬置,见图1.1。作用在发动机上的主要激振力为Fz和围绕曲轴中心线的力矩Mx,有时也存在垂直方向的激振力矩My,但是激振力Fx和Fy以及激振力矩Mz根本不存在或很少发生。图1.多缸发动机的激振力和激振力矩如图所示,X轴与曲轴中心线相同,对于发动机纵向布置在整车上的车辆来说,该轴与车辆的纵轴方向一致。对大多数的前轮驱动车辆来说,X轴相当于车辆的横轴。对发动机来说,Z轴方向与直列发动机的汽缸中心线相一致,与V型发动机汽缸中心线角分线相一致。当发动机斜置时,发动机的Z轴与车辆的Z轴不一致.2-----------------------------------------------(1.3)发动机激励可分为惯性和燃烧激励。下面先介绍单缸机,然后介绍多缸机.1.单缸发动机激励1.1.曲柄机构运动见图1.2a,对于曲柄机构的运动,可以用连杆大头长度l和曲柄半径r(冲程s=2r)建立曲轴转角α和活塞行程Sk的运动关系式:角α和β之间的关系可由距离BD=lsinβ=rsinα,再将下式代入其中:λp=r/l这样可以得到:代入连杆比λp=r/l,展开平方根后可得:忽略4阶以上的各项,活塞行程可以由下式描述:假如曲轴角速度ω为常数,曲轴转角α将与时间成正比,则有:对式(1.2)求导,可得到活塞速度方程式:-----------------------------------------------(1.2)3加速度方程式:-----------------------------------------------(1.4)a.曲柄机构运动b.曲柄机构受力分析图1.2发动机曲柄机构运动和受力分析图1.3给出了连杆无限长(λp=0)时和有限长(λp=0.3)时的活塞行程,速度及加速度.4图1.3.活塞运动与曲轴转角1.2.惯性力惯性力Fz等于质量ms乘以(1.4)式中的加速度,作用在动力总成悬置上。惯性力中的质量ms包括活塞质量,活塞环和活塞销质量,1/3~1/4的连杆质量.惯性力与角速度ω的平方成正比.也可以认为发动机转速nm以两种激励频率激发发动机振动,其一为一阶振动频率1*ω和二阶振动频率2*ω.1.3.惯性力矩除了惯性力之外,还有一个惯性力矩Mx,由图1.2b,惯性力Fz可分解为作用在连杆上的分力S和垂直作用在气缸壁上的分力FN:5一般可将作用在连杆上的分力S分解成作用在曲轴上点B的两个分力,即一个径向分力和一个垂直切向分力T。分力T产生的惯性力矩Mx=T*r(参见图1.2b)。则有:上述惯性力矩也可用FN*k表示。这两个惯性力矩形成的力偶将使发动机朝与发动机旋转方向相反的方向倾倒。将式(1.5)中的惯性力Fz代入到式(1.6)中,可以得到惯性力矩Mxm(添加的符号m表示质量)新的表达式。-----------------------------(1.7)6由此,惯性力矩Mxm的数值大小也和惯性力一样,由往复运动质量ms,曲轴曲柄半径r,连杆比λp和曲轴的角速度平方或者发动机转速的平方确定.与Fz不一样的是,还产生了3阶和4阶惯性力矩。例,在表1.1中,第二栏给出了单缸机不同阶的幅值。1.4燃烧力矩在燃烧过程中缸内产生一个作用于活塞上的力,该力等于燃烧压力Pzyl乘以活塞面积Ak,它对外没有影响,因为只直接作用在缸盖上,因而可有下式:Fzg=0--------------(1.8)(Fzg中附加的符号g含义为气体)燃烧力矩--只来源于燃烧气体压力,作用在燃烧室中并最终作用在动力总成悬置上。根据式(1.6),该力矩为:惯性力和惯性力矩的周期都是360o曲轴转角,燃烧压力则不同,其周期与发动机冲程形式有关,两冲程发动机的周期为360o曲轴转角,四冲程发动机的周期为720o曲轴转角。对四冲程发动机,一般常将周期定为1转,也就是360o曲轴转角,因此产生了半阶振动频率0.5*ω,一阶半振动频率1.5*ω等等。对于两冲程发动机不存在这种情况。使用用复里叶变换可将燃烧力矩变换成如下形式:-----------------------(1.9)78用M表示有效力矩,ai和φi分别表示叠加的单个正弦激振波的振动幅值和相位角,i=0.5,1.0,1.5……,图1.4给出了燃烧力矩Mxg和惯性力矩Mxm的波形对比。为了评估各阶谐波的作用,可以利用一个相对简单的矩形函数替---------(1.11)代上述相对复杂的气体力矩-曲轴转角曲线。四冲程发动机的评估结果可见图1.5a。在图1.5b给出了幅值和相位角。-------------------------------------------(1.10)图.1.4单缸四冲程发动机气体力矩曲线9图.1.5.a.利用矩形函数获得的四冲程发动机气体力矩曲线近似图b.矩形函数幅值和相位角,见式(1.11)1.5单缸发动机综合激振力矩10由图(1.1)可知,单杠发动机综合激振力和激振力矩包括两部分,即Fz和Mx。其中Fz只来源于惯性力矩,而不是来源于燃烧,因此适用于式(1.5)。而综合激振力矩可由下式获得:1阶激振力矩只来源于燃烧,综合激振力矩为惯性力矩和气体力矩的叠加,其幅值和相位角原则上可分为两个不同的部分。与燃烧有关的部分只与平均扭矩和燃烧过程有关,燃烧过程决定了a1,a2,a3,……;φ1,φ2,φ3,……,但和转速无关。此外,惯性力矩则只与转速nm(ω)有关,正确地说只与转速的平方(ω2)有关,与Mx及燃烧无关。2.四冲程4缸直列发动机的激振力和激振力矩作为动力总成,单缸发动机对整车是没有意义的,但对发动机激振振动的导入和理论计算确是有用的。本节将介绍四冲程4缸发动机的激振问题。为了简化影响因素,假设每缸的活塞质量ms,曲柄半径r和连杆比λp都是相等的,这个假设在实际生产中几乎100%可以达到。按照曲柄顺序,考虑每缸之间夹角,将力和力矩进行矢量叠加。对于直列4缸发动机,按表1.1,第2缸和第3缸的曲轴曲拐与第1缸和第4缸的曲轴曲拐正好成180o=π。-------------(1.12)112.1惯性力Z向力Fz只与惯性力有关,和燃烧无关,因此也和燃烧激振力(四-或二冲程)无关,按表1.1曲拐位置可以得出如下结果,按式(1.5),缸和4缸的惯性力为:这意味着直列4缸发动机上的1阶惯性力不存在,2阶惯性力相叠加,这一结果可以从表1.1第3行第3列的矢量叠加图中直观地看出来。在装用直列4缸发动机的车辆上,2阶惯性力是影响乘客舒适性,即影响整车振动和噪声的主要激振源。为了减轻这种影响,必须采取后述方法,即通过整车包括发动机和悬置这个振动系统来加以解决。对4缸发动机,可以加装转速为曲轴转速2倍的平衡轴将2阶惯性力降低到零,见图2.1,结果见1.2.在图1.2a上,在频率27Hz处,没有平衡轴的发动机2阶激振惯性力清晰可见。在图1.2b上,由于平衡轴的平衡作用,该频率位置的激振惯性力明显地减少(惯性力不能完全消除,因为该处不仅存在2阶惯性力,也存在其他阶的惯性力和气体力矩)。----------(2.1)-----(2.2)-----------------------------(2.3)图.2.1.平衡轴机构,用于平衡直列4缸发动机2阶惯性力图.2.2.b.垂直加速度幅值对比在发动机横梁上测量,直列四冲程4缸发动机怠速转速8001/min(2阶激振频率约为27Hz)a.无平衡轴b.有平衡轴122.2.惯性力矩和燃烧力矩直列4缸发动机惯性力矩Mxm可见表1.1第3列最后1行,最终形式:这里存在2阶和4阶激振力矩。一般存在偶数阶的激振力矩,奇数阶自行抵消。2阶惯性力矩也象2阶惯性力一样,按图2.1方法利用平衡轴机构补偿,不过平衡轴必须偏心布置。燃烧力矩也是一样,如图2.3.b所示,只有偶数阶剩下,半数阶和奇数阶都消失了,由式(1.10)可以得出:-----------------(2.4)-------------(2.5)13图.2.3.四冲程4缸发动机气体力矩a.矩形函数得到的气体力矩-曲轴转角近似值;b.不同阶气体力矩幅值矢量图平均力矩Mx和幅值ai适用于单缸发动机,对于4缸发动机其值为单缸发动机的4倍。将式(2.4)和式(2.5)相加后,总的力矩为:在图2.4中,作为例子给出了2阶力矩的相关幅值。在矢量图a中,当燃烧力矩Mxg的幅值a2和相位角φ2为常量,惯性力矩Mxm的幅值(1/2msrφω)随发动机转速nm(或ω)而变化。所以发动机低速运转时气体力矩是主要部分,高速运转时惯性力矩是主要部分。按图b,总--------------------------(2.6)1415图2.4.a-e惯性力矩和燃烧力矩的综合力矩a.气体力矩a2为常量,惯性力矩1/2msr2ω2为变量时的162阶力矩矢量图b.综合力矩MxΣ与转速的关系曲线c.相对于曲轴转角的特性曲线d.阶数分析e.恒定惯性力矩和燃烧力矩变化时的2阶力矩矢量图的2阶力矩MxΣ在一个确定的转速时有一个最小值,这个最小值与燃烧力矩的幅值有关,在矢量图中很容易清楚看到。?????在图c和图d中给出了不同转速下1阶力矩幅值与曲轴转角关系的特性曲线。在矢量图e上给出了当惯性力矩为常量时,燃烧力矩的变换情况。对多缸发动机还必须注意y轴的力矩问题。见图1.1,但是只考虑惯性力矩即可。源自燃烧的力矩为零,因为气体力总是作用在汽缸盖和活塞上,对外部而言效果互相抵消。在图2.5上,sp为所讲述的4缸发动机重心,y轴也不在第2和第3缸之间,所以按图2.5力矩为:代入式(2.1)和(2.2),并且2缸和3缸,1缸和4缸的力矩总是相加。按照上述条件可以得到下式:-----------------(2.7)17图2.5直列4缸发动机y轴的惯性力矩Mym2.3工况特性对惯性力Fz和惯性力矩Mxm=My,当激振幅值只与激振频率的平方ω2(发动机转速的平方)成正比时,燃烧力矩Mzg的幅值和激振频率的关系与整车工况有关。这里首次必须同时关注整车。图2.6下列参数条件下,驱动力矩-速度示意图,18整车参数发动机特性质量910kg怠速转速900min-1轮胎半径0.3m最高转速6540min-1迎风面积1.9m2最大功率64Kw滚动阻力0.01对应转速6000min-1Cω-值0.3变速箱特性速比效率iG=1档40.952档2.50.953挡1.70.954档1.250.955档10.95主传动比iA40.95从静态力矩开始。在图2.6中作为一个例子给出了熟悉的‘牵引力-速度示意图’。此图中的一部分,对5档的每一个档位给出了作用于驱动轮的最大力矩MR和相对应的车速;另一部分为在平坦路面上匀速行驶。从中可以看出,驱动力矩与车速同所选档位和发动机转速有关。对前轮驱动汽车,当发动机、变速箱和主传动器视为一个动力总成模块时,此驱动力矩MR合并,全部被动力总成悬置承受。动力总成力矩Maggr,当忽略中间损失时等于MR,对4缸直列四冲程发动机等于式(2.5)的平均值。对前轮驱动汽车也可用下式表示:其中ik=iG*iA(Ig:变速箱速比;iA:主传动比),这个公式对后置发动机后轮驱动的汽车也适用。对流行的标准驱动方式(发动机和变速箱在前,主传动器及驱动轮在后),由于主传动器速比之后的力矩不作用在动力总成悬置上,因此对标准驱动方式必须使用下式:19另一部分是动态燃烧力矩,为了便于分析,在图2.7中将发动机和传动装置分开画出,分别由各自的悬置支撑。现在按式(1.3.a),并假设n~ω=常数(通过一个无限大的飞轮调节),曲轴的输出力矩以及变速箱的输入
本文标题:发动机激励的整车振动
链接地址:https://www.777doc.com/doc-927992 .html