您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 心得体会 > 标准高中数学教案样例(精编4篇)
标准高中数学教案样例(精编4篇)【导读引言】网友为您整理收集的“标准高中数学教案样例(精编4篇)”精编多篇优质文档,以供您学习参考,希望对您有所帮助,喜欢就下载吧!数学教案数列_高一数学教案_1数学教案-数列_高一数学教案_模板数列教学目标1.理解数列概念,了解数列和函数之间的关系2.了解数列的通项公式,并会用通项公式写出数列的任意一项3.对于比较简单的数列,会根据其前几项写出它的个通项公式4.提高观察、抽象的能力.教学重点1.理解数列概念;2.用通项公式写出数列的任意一项.教学难点根据一些数列的前几项抽象、归纳数列的通项公式.教学方法发现式教学法教具准备投影片l张(内容见下页)教学过程(1)复习回顾师:在前面第二章中我们一起学习了有关映射与函数的知识,现在我们再来回顾一下函数的定义.生:(齐声回答函数定义).师:函数定义(板书)如果A、B都是非空擞集,那么A到B的映射就叫做A到B的函数,记作:,其中(Ⅱ)讲授新课师:在学习第二章的基础上,今天我们一起来学习第三章数列有关知识,首先我们来看一些例子。(放投影片)4,5,6,7,8,9,10.①②1,,,,….③1,,,,4,….④-1,1,-1,1,-1,1,….⑤2,2,2,2,2,师:观察这些例子,看它们有何共同特点?(启发学生发现数列定义)生:归纳、总结上述例子共同特点:1.均是一列数;2.有一定次序师:引出数列及有关定义一、定义1.数列:按一定次序排列的一列数叫做数列;2.项:数列中的每一个数都叫做这个数列的项。各项依次叫做这个数列的第1项(或首项)。第2项,…,第n项…。如:上述例子均是数列,其中例①:“4”是这个数列的第1项(或首项)“9”是这个数列的第6项。3.数列的一般形式:,或简记为,其中是数列的第n项生:综合上述例子,理解数列及项定义如:例②中,这是一个数列,它的首项是“1”,“”是这个数列的第“3”项,等等。师:下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个公式表示?(引导学生进一步理解数列与项的定义,从而发现数列的通项公式)对于上面的数列②,第一项与这一项的序号有这样的对应关系:项↓↓↓↓↓序号12345师:看来,这个数的第一项与这一项的序号可用一个公式:来表示其对应关系即:只要依次用1,2,3…代替公式中的n,就可以求出该数列相应的各项生:结合上述其他例子,练习找其对应关系如:数列①:=n+3(1≤n≤7)数列③:≥1)数列⑤:n≥1)4.通项公式:如果数列的第n项与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。师:从映射、函数的观点来看,数列也可以看作是一个定义域为正整数集N+(或它的有限子集的函数,当自变量从小到大依次取值时对应的一列函数值,数列的通项公式就是相应函数的解析式。师:对于函数,我们可以根据其函数解析式画出其对应图象。看来,数列也可根据其通项公式来函出其对应图象,下面同学们练习画数列①②的图象。生:根据扭注通项公式画出数列①,②的图象,并总结其特点。图3—1特点:它们都是一群弧立的点5.有穷数列:项数有限的数列6.无穷数列:项数无限的数列二、例题讲解例1:根据下面数列的通项公式,写出前5项:(1)师:由通项公式定义可知,只要将通项公式中n依次取1,2,3,4,5,即可得到数列的前5项。解:(1)(2)例2:写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)1,3,5,7;(2)(3)分析:(1)项1=2×1-13=2×2-15=2×3-17=2×4-1↓↓↓↓序号1234∴;(2)序号:1234↓↓↓↓项分母:2=1+13=2+14=3+15=4+1↓↓↓↓项分子:22-132-142-152-1∴;(3)序号‖‖‖‖∴(Ⅲ)课堂练习生:思考课本P112练习1,2,3,4师:[提问]练习3,4,并根据学生回答评析生:板演练习1,2(Ⅳ)课时小结师:对于本节内容应着重掌握数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n项求一些简单数列的通项公式。(V)课后作业一、课本P114习题1,2二、1.预习内容:课本P112~P13预习提纲:①什么叫数列的递推公式?②递推公式与通项公式有什么异同点?板书设计课题一、定义1.数列2.项3.一般形式4.通项公式5.有穷数列6.无穷数列二、例题讲解例1例2函数定义教学后记§数列教学目标1.了解数列的递推公式,明确递推公式与通项公式的异同2.会根据数列的递推公式写出数列的前几项3.培养学生推理能力.教学重点根据数列的递推公式写出数列的前几项教学难点理解递推公式与通项公式的关系教学方法启发引导法教具准备投影片1张(内容见下页)教学过程(I)复习回顾师:上节课我们学习了数列及有关定义,下面先来回顾一下上节课所学的主要内容.师:[提问]上节课我们学习了哪些主要内容?生:[回答]数列、项、表示形式、通项公式、数列分类等等.(Ⅱ)讲授新课师:我们所学知识都来源于实践,最后还要应用于生活。用其来解决一些实际问题.下面同学们来看此图:钢管堆放示意图(投影片).生:观察图片,寻其规律,建立数学模型.模型一:自上而下:第1层钢管数为4;即:14=1+3第2层钢管数为5;即:25=2+3第3层钢管数为6;即:36=3+3第4层钢管数为7;即:47=4+3第5层钢管数为8;即:58=5+3第6层钢管数为9;即:69=6+3第7层钢管数为10;即:710=7+3若用表示钢管数,n表示层数,则可得出每一层的钢管数为一数列,且≤n≤7)师:同学们运用每一层的钢筋数与其层数之间的对应规律建立了数列模型,这完全正确,运用这一关系,会很快捷地求出每一层的钢管数。这会给我们的统计与计算带来很多方便。师:同学们再来看此图片,是否还有其他规律可循?(启发学生寻找规律2,建立模型二)生:自上而下每一层的钢管数都比上一层钢管数多1。即依此类推:(2≤n≤7)师:对于上述所求关系,若知其第1项,即可求出其他项,看来,这一关系也较为重要。一、定义:递推公式:如果已知数列的第1项(或前几项),且任一项与它的前一项(或前n项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。说明:递推公式也是给出数列的一种方法。二、例题讲解例1:已知数列的第1项是1,以后的各项由公式给出,写出这个数列的前5项。分析:题中已给出的第1项即递推公式:解:据题意可知:例2:已知数列中,≥3)试写出数列的前4项解:由已知得(Ⅲ)课堂练习生:课本P113练习1,2,3(书面练习)(板演练习1.写出下面各数列的前4项,根据前4项写出该数列的一个通项公式。(1)≥2)(2)≥3)师:给出答案,结合学生所做进行评析。(Ⅳ)课时小结师:这节课我们主要学习了数列的另一种给出方法,即递推公式及其用法,课后注意理解。注意它与通项公式的区别在于:1.通项公式反映的是项与项数之间的关系,而递推公式反映的是相邻两项(或n项)之间的关系。2.对于通项公式,只要将公式中的n依次取胜,2,3…即可得到相应的项。而递推公式则要已知首项(或前n项),才可求得其他的项。(V)课后作业一、课本P114习题3,4二、1.预习内容:课本P114—P1163.预习提纲:①什么是等差数列?②等差数列通项公式的求法?板书设计课题一、定义1.递推公式:三、例题讲解例1例2小结:通项公式与递推公式区别教学后记一、教学目标(1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;(2)理解逻辑联结词“或”“且”“非”的含义;(3)能用逻辑联结词和简单命题构成不同形式的复合命题;(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;(5)会用真值表判断相应的复合命题的真假;(6)在知识学习的基础上,培养学生简单推理的技能.二、教学重点难点:重点是判断复合命题真假的方法;难点是对“或”的含义的理解.三、教学过程1.新课导入在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)学生举例:平行四边形的对角线互相平.……(1)两直线平行,同位角相等.…………(2)教师提问:“……相等的角是对顶角”是不是命题?……(3)(同学议论结果,答案是肯定的.)教师提问:什么是命题?(学生进行回忆、思考.)概念总结:对一件事情作出了判断的语句叫做命题.(教师肯定了同学的回答,并作板书.)由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.(教师利用投影片,和学生讨论以下问题.)例1判断以下各语句是不是命题,若是,判断其真假:命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.2.讲授新课大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)(1)什么叫做命题?可以判断真假的语句叫做命题.判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如中含有变量,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).(2)介绍逻辑联结词“或”、“且”、“非”.“或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式.对“或”的理解,可联想到集合中“并集”的概念.中的“或”,它是指“”、“”中至少一个是成立的,即且;也可以且;也可以且.这与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能.对“且”的理解,可联想到集合中“交集”的概念.中的“且”,是指“”、“这两个条件都要满足的意思.对“非”的理解,可联想到集合中的“补集”概念,若命题对应于集合,则命题非就对应着集合在全集中的补集.命题可分为简单命题和复合命题.不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.(4)命题的表示:用,,,,……来表示.(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)我们接触的复合命题一般有“或”、“且”、“非“、“若则”等形式.给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.对于给出“若则”形式的复合命题,应能找到条件和结论.在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.3.巩固新课例2判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.(1);(2)非整数;(3)内错角相等,两直线平行;(4)菱形的对角线互相垂直且平分;(5)平行线不相交;(6)若,则.(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)例3写出下表中各给定语的否定语(用课件打出来).若给定语为等于大于是都是至多有一个至少有
本文标题:标准高中数学教案样例(精编4篇)
链接地址:https://www.777doc.com/doc-9432266 .html