您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 四年级数学教案:三角形的内角和(通用4篇)
参考资料,少熬夜!四年级数学教案:三角形的内角和(通用4篇)【导读指引】三一刀客最漂亮的网友为您整理分享的“四年级数学教案:三角形的内角和(通用4篇)”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!《三角形内角和》数学教案【第一篇】教学内容:人教版义务教育课程标准试验教科书数学四年级下册第67页。设计理念:遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。教材分析:三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180。学情分析:学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道三角形的内角和是180度的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。参考资料,少熬夜!教学目标:1、使学生经历自主探索三角形的内角和的过程,知道三角形的内角和是180°,能运用这一规律解决一些简单的问题。2、使学生在观察、操作、分析、猜想、验证、合作、交流等具体活动中,提高动手操作能力和数学思考能力。3、使学生在参与数学学习活动的过程中,获得成功的体验,感受探索数学规律的乐趣,产生喜欢数学的积极情感,培养积极与他人合作的意识《三角形内角和》数学教案【第二篇】教材分析教材的小标题为“探索与发现”,说明这部分内容要求学生自主探索,并发现有关三角形内角和性质。教材创设了一个有趣的问题情境,以此激发学生的兴趣,引出探索活动。首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。大多数学生会想到用测量角的方法,此时就可以安排小组活动。每组同学可以画出大小、形状不同的若干个三角形,分别量出三个内角的度数,并求出它们的和,填写在教材提供的表中。最后发现,大小、形状不同的三角形,每一个三角形内角和都在180°左右。三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是180°。二是把三个内角折叠在一起,发现也能组成一个平角。每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于90°,钝角三角形里的两个锐角和小于90°。学情分析学生在前面的学习中已经认识了三角形的基本特征及分类,并且在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,知道了平角是180°;学生通过前几年的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯,所以在学生具备这些数学知识和能力的基础上,来引导学生探索和发现三角形内角和是180°这一性质。要让学生明确一个三角形分成两个小三角形后,每个三角形内角和还是180°,两个小三角形拼成一个大三角形,大三角形的内角和也是180°。参考资料,少熬夜!教学目标1、知识目标:让学生探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。2、能力目标:培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。3、情感目标:培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。教学重点和难点教学重点:掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题。教学难点:让学生经历探索和发现三角形的内角和是180°的过程。教学过程:(一)、激趣导入:1、认识三角形内角我们已经认识了什么是三角形,谁能说出三角形有什么特点?(三角形是由三条线段围成的图形,三角形有三个角,…。)请看屏幕(课件演示三条线段围成三角形的过程)。三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及它的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍“内角”。)2、设疑激趣现在有两个三角形朋友为了一件事正在争论,我们来帮帮它们。(播放课件)同学们,请你们给评评理:是这样吗?现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?这节课我们就一起来研究这个问题。(板书课题:三角形的内角和)(二)、动手操作,探究新知1、探究特殊三角形的内角和师拿出两个三角板,问:它们是什么三角形?(直角三角形)请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。(由于学生在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,所以能够很快求得每块三角尺的3个角的和都是180°)参考资料,少熬夜!从刚才两个三角形内角和的计算中,你们发现了什么?(这两个三角形的内角和都是180°)。这两个三角形都是直角三角形,并且是特殊的三角形。2、探究一般三角形内角和(1)。猜一猜。猜一猜其它三角形的内角和是多少度呢?(可能是180°)(2)。操作、验证一般三角形内角和是180°。所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?(可以先量出每个内角的度数,再加起来。)测量计算,是吗?那就请四人小组共同计算吧!老师让每个同学都准备了直角三角形、锐角三角形和钝角三角形三种不同的三角形,并量出了每个内角的度数,下面就请同学们在小组内每种各选一个求出它们的内角和,把结果填在表中:(3)小组汇报结果。请各小组汇报探究结果提问:你们发现了什么?小结:通过测量计算我们发现每个三角形的三个内角和都在180°左右。3继续探究(1)动手操作,验证猜测。没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?请同学们动脑筋想一想,能通过动手操作来验证吗?(先小组讨论,再汇报方法)大家的办法都很好,请你们小组合作,动手操作。(2)学生操作,教师巡视指导。(3)全班交流汇报验证方法、结果。学生放在投影仪上展示给大家看。(剪拼、撕拼、折拼)我们可以得出一个怎样的结论?(三角形的内角和是180°)引导学生通过剪拼、撕拼和折拼的方法发现:各类三角形的三个内角都可以拼成一个平角,使学生证实三角形内角和确实是180°,测量计算有误差。5、辨析概念,透彻理解。(出示一个大三角形)它的内角和是多少度?(出示一个很小的三角形)它的内角和是多少度?一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?(学生有的答参考资料,少熬夜!360°,有的180°。)把大三角形平均分成两份。每个小三角形的内角和是多少度?(生有的答90°,有的180°。)这两道题都有两种答案,到底哪个对?为什么?(学生个个脸上露出疑问。)大家可以在小组内用三角尺拼一拼,也可以画一画,互相讨论。经过一翻激烈的讨论探究后,学生发现:三角形不论位置、大小、形状如何,它的内角和总是180°(三)小结刚才同学们用很多方法证明了无论是什么样的三角形内角和都是180°,现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。(四)、巩固练习,拓展应用下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)1、求三角形中一个未知角的度数。(1)在三角形中,已知∠1=85°,∠2=65°,求∠3。(2)在三角形中,已知∠1=98°,∠2=49°,求∠3。2、判断(1)一个三角形的三个内角度数是:90°、75°、25°。()(2)一个三角形至少有两个角是锐角。()(3)钝角三角形的内角和比锐角三角形的内角和大。()(4)直角三角形的两个锐角和等于90°。()3、解决生活实际问题。(1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?(2)交通警示牌“让”为等边三角形,求其中一个角的度数。4、拓展练习。利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)小组的同学讨论一下,看谁能找到最佳方法。学生汇报,在图中画上虚线,教师课件演示。请同学们自己在练习本上计算。(四)、课堂总结通过这节课的学习,你有哪些收获?《三角形的内角和》教学反思【第三篇】《三角形的内角和》教材是先让学生通过计算三角参考资料,少熬夜!尺得个内角的度数和,激发学生好奇心,进而引发学生猜想:其他三角形的内角和也是180度吗?再通过组织操作活动验证猜想,得出结论。根据这样的教材安排,本课的重点也就应放在“三角形内角和是180度”的探索上,让学生在探索中深入理解得出过程。针对教材的如此安排,我也设计了如下的开放的课堂预设:验证过程1、要知道我们猜测的是否正确,你有什么办法验证呢?先独立思考,有想法了在小组里交流。学生交流想法:生一:我们组根据刚才三角板的内角和是三个角的度数加起来得出的,所以,我们就用量角器量出了三个角的度数,再加起来。学生说出了测量的度数相加,虽然不是很精确180度,量的过程中有点误差,得到了在180度左右。生二:我们组是把锐角三角形的三个角跟书上一样去折,折在一起发现正好是个平角,所以我们发现锐角三角形内角和也是180度。(及时表扬了能主动预习的好习惯。)生三:我们组把钝角三角形跟刚才一组一样,折在一起,发现也能拼成一个平角,所以钝角三角形的内角和也是180度。生四:我们组研究的是直角三角形,跟上面两组的同学一样折在一起,三个角拼起来也是一个平角,所以直角三角形的内角和也是180度。生五:我们也是折的,但我们没有把三个角折在一起,而是把两个小的角折到直角那里发现两个锐角合起来正好与直角三角形的直角重合,图形也就成了一个长方形,两个锐角的和是90度再加个直角也就是180度。也有同学提出了采用了减下角再拼的方法。以上这个小片段,虽然在孩子们表述中没这么流利,完整,但却是他们最真实的发现,这堂课上下来,感觉收获很大。自己感觉这节课的设计上把握了学生学习起点与心理,遵循了教材让学生先猜想再验证的思路,从学生已有的知识背景出发,为他们提供了重复粉从事数学活动的时间和交流机会。学生思考着,讨论着,交流着,感悟着,在这一过程中,学生不仅掌握了知识,寻求到了解决问题的方法,更重要的是在交流中,学生的语言表达能力也得到了很大的增强。《三角形内角和》数学教案【第四篇】尊敬的各位评委老师:参考资料,少熬夜!大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:一、教材分析“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。二、教学目标1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。3、情感与态度:使学
本文标题:四年级数学教案:三角形的内角和(通用4篇)
链接地址:https://www.777doc.com/doc-9578039 .html