您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 总结/报告 > 人教版六年级下册《负数》教案精编3篇
参考资料,少熬夜!人教版六年级下册《负数》教案精编3篇【导读指引】三一刀客最漂亮的网友为您整理分享的“人教版六年级下册《负数》教案精编3篇”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!人教版六年级下册《负数》教案1教学目标:1、引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。2、使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。3、结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。教学重、难点:负数的意义。教学过程:一、谈话交流谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢你能举出一些这样的现象吗?二、教学新知1、表示相反意义的量。(1)引入实例。谈话:如果沿着刚才的话题继续聊下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。①六年级上学期转来6人,本学期转走6人。②张阿姨做生意,二月份盈利1500元,三月份亏损200元。③与标准体重比,小明重了千克,小华轻了千克。④一个蓄水池夏季水位上升米,冬季水位下降米。指出:这些相反的词语和具体的数量结合起来,就成了一组组相反意义的量。(补充板书:相反意义的量。)(2)尝试。怎样用数学方式来表示这些相反意义的量呢?请同学们选择一例,试着写出表示方法。(3)展示交流。2、认识正、负数。参考资料,少熬夜!(1)引入正、负数。谈话:刚才,有同学在6的前面写上+表示转来6人,添上-表示转走6人(板书:+6-6),这种表示方法和数学上是完全一致的。介绍:像-6这样的数叫负数(板书:负数);这个数读作:负六。-,在这里有了新的意义和作用,叫负号。+是正号。像+6是一个正数,读作:正六。我们可以在6的前面加上+,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。(2)试一试。请你用正、负数来表示出其它几组相反意义的量。写完后,交流、检查。3、联系实际,加深认识。(1)说一说存折上的数各表示什么?(教学例2。)(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。①同桌交流。②全班交流。根据学生发言板书。这样的正、负数能写完吗?(板书:)强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。4、进一步认识0。(1)看一看、读一读。谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。哈尔滨:-15℃~-3℃北京:-5℃~5℃深圳:12℃~23℃温度中有正数也有负数,请把负数读出来。(2)找一找、说一说。我们来看首都北京当天的温度,-5℃读作:负五摄氏度或负五度,表示零下5度;5℃又表示什么?你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)说一说,你怎么这么快就找到了?(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)你能很快找到12℃、-3℃吗?(3)提升认识。参考资料,少熬夜!请学生观察温度计,说一说有什么发现?在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)0是正数,还是负数呢?在学生发言的基础上,强调:0作为正数和负数的分界点,它既不是正数也不是负数。(4)总结归纳。如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对数进行重新分类:(完善板书。)5、练一练。读一读,填一填。(练习一第1题。)6、出示课题。同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。7、负数的历史。(1)介绍其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(课件配音播放):中国是世界上最早认识和运用负数的国家,早在2000多年前,我国古代数学着作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:两算得失相反,要令正负以名之。古代用算筹表示数,这句话的意思是:两种得失相反的数,分别叫做正数和负数。并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!(2)交流。简单了解了负数的历史,你有什么感受?三、练习应用今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。课件逐一出示:1、表示海拔高度。(做一做第2题。)通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高米,可以记作_____________;吐鲁番盆参考资料,少熬夜!地大约比海平面低155米,它的海拔高度应记作_____________。2、表示温度。(练习一第2题。)月球表面白天的平均温度是零上126℃,记作_________℃,夜间的平均温度为零下150℃,记作_____________℃。3、(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪个按钮?如果到储藏室取东西呢?4、表示时间。(练习一第3题。)5、净含量:表示什么意思?四、总结延伸1、学生交流收获。2、总结。简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。人教版六年级下册《负数》教案2教学目标1、使学生理解正数与负数的概念,并会判断一个给定的数是正数还是负数;2、会初步应用正负数表示具有相反意义的量;3、使学生初步了解有理数的意义,并能将给出的有理数进行分类;4、培养学生逐步树立分类讨论的思想;5、通过本节课的教学,渗透对立统一的辩证思想。教学建议一、重点、难点分析本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加-号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的基准。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。参考资料,少熬夜!把负数理解为小于0的数。教材中,没有出现具有相反意义的量的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。二、知识结构1、正数、负数和零的概念正数负数零象1、、、48等大于零的数叫正数象-1、-,,-48等小于零的数叫负数0叫做零,0既不是正数也不是负数2、有理数的分类三、教法建议这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的。从内容上讲,负数比非负数要抽象、难理解。因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数)。这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了。为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。四、正数与负数概念的理解1﹒对于正数和负数的概念,不能简单的理解为:带+号的数是正数,带-号的数是负数。例如:一定是负数吗?答案是不一定。因为字母可以表示任意的数,若表示正数时,是负数;当表示0时,就在0的前面加一个负号,仍是0,0不分正负;当表示负数时,就不是负数了,它是一个正数,这些下节将进一步研究。2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如-6,-4,-2,0,2,4,6,不能被2整除的数是奇数,如-5,-4,-2,1,3,53﹒到现在为止,我们学过的数细分有五类:正整参考资料,少熬夜!数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。五、有理数的分类整数和分数统称为有理数。1)正整数、零、负整数统称为整数;正分数、负分数统称为分数。这样有理数按整数、分数的关系分类为:2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。因此,有理数按正数、负数、0的关系还可分类为:3)注意概念中所用统称二字,它与说整数和分数是有理数的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说统称还是不错,而用后一种说法就欠妥了。4)分数和小数的区别:分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。如圆周率就不能表示成分数。5)到目前为止,所学过的数(除外)都是有理数。人教版六年级下册《负数》教案3教学目标:1、使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。2、使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。3、使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。教学重点:初步认识正数和负数以及读法和写法。教学难点:理解0既不是正数,也不是负数。教学具准备:多媒体课件、温度计、练习纸、卡片等。教学过程:一、游戏导入(感受生活中的相反现象)1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。2、下面我们来难度大些的,看谁反应最快。①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。参考资料,少熬夜!③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄式度(零下10摄式度)。3、谈话:老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)二、教学例11、认识温度计,理解用正负数来表示零上和零下的温度。课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄式度呢?5小格呢?10小格呢?B、现在你能看出南京是多少摄式度吗?(是0℃。)你是怎么知道的?(那里有个0,表示0摄式度)。(2)上海的气温:上海的最低气温是多少摄式度呢?(在温度计上拨一拨)拨的时候是怎样
本文标题:人教版六年级下册《负数》教案精编3篇
链接地址:https://www.777doc.com/doc-9649841 .html