您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 初三数学切线长定理教案
参考资料,少熬夜!初三数学切线长定理教案【导读指引】三一刀客最漂亮的网友为您整理分享的“初三数学切线长定理教案”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!《切线长定理》教案1、教材分析(1)知识结构(2)重点、难点分析重点:及其应用.因再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点.难点:与有关的证明和计算问题.如120页练习题中第3题,它不仅应用,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来.2、教法建议本节内容需要一个课时.(1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析的基本图形;对重要的结论及时总结;(2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学.教学目标1.理解切线长的概念,掌握;2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度.教学重点:是教学重点教学难点:教学过程设计:(一)观察、猜想、证明,形成定理1、切线长的概念.如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O的切线长.引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.2、观察利用电脑变动点P的位置,观察图形的特征和各参考资料,少熬夜!量之间的关系.3、猜想引导学生直观判断,猜想图中PA是否等于PB.PA=PB.4、证明猜想,形成定理.猜想是否正确。需要证明.组织学生分析证明方法.关键是作出辅助线OA,OB,要证明PA=PB.想一想:根据图形,你还可以得到什么结论?∠OPA=∠OPB(如图)等.:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.5、归纳:把前面所学的切线的5条性质与一起归纳切线的性质6、的基本图形研究如图,PA,PB是⊙O的两条切线,A,B为切点.直线OP交⊙O于点D,E,交AP于C(1)写出图中所有的垂直关系;(2)写出图中所有的全等三角形;(3)写出图中所有的相似三角形;(4)写出图中所有的等腰三角形.说明:对基本图形的深刻研究和认识是在学习几何中关键,它是灵活应用知识的基础.(二)应用、归纳、反思例1、已知:如图,P为⊙O外一点,PA,PB为⊙O的切线,A和B是切点,BC是直径.求证:AC∥OP.分析:从条件想,由P是⊙O外一点,PA、PB为⊙O的切线,A,B是切点可得PA=PB,∠APO=∠BPO,又由条件BC是直径,可得OB=OC,由此联想到与直径有关的定理“垂径定理”和“直径所对的圆周角是直角”等.于是想到可能作辅助线AB.从结论想,要证AC∥OP,如果连结AB交OP于O,转化为证CA⊥AB,OP⊥AB,或从OD为△ABC的中位线来考虑.也可考虑通过平行线的判定定理来证,可获得多种证法.证法一.如图.连结AB.PA,PB分别切⊙O于A,B∴PA=PB∠APO=∠BPO∴OP⊥AB又∵BC为⊙O直径∴AC⊥AB参考资料,少熬夜!∴AC∥OP(学生板书)证法二.连结AB,交OP于DPA,PB分别切⊙O于A、B∴PA=PB∠APO=∠BPO∴AD=BD又∵BO=DO∴OD是△ABC的中位线∴AC∥OP证法三.连结AB,设OP与AB弧交于点EPA,PB分别切⊙O于A、B∴PA=PB∴OP⊥AB∴=∴∠C=∠POB∴AC∥OP反思:教师引导学生比较以上证法,激发学生的学习兴趣,培养学生灵活应用知识的能力.例2、圆的外切四边形的两组对边的和相等.(分析和解题略)反思:(1)例3事实上是圆外切四边形的一个重要性质,请学生记住结论.(2)圆内接四边形的性质:对角互补.P120练习:练习1填空如图,已知⊙O的半径为3厘米,PO=6厘米,PA,PB分别切⊙O于A,B,则PA=_______,∠APB=________练习2已知:在△ABC中,BC=14厘米,AC=9厘米,AB=13厘米,它的内切圆分别和BC,AC,AB切于点D,E,F,求AF,AD和CE的长.分析:设各切线长AF,BD和CE分别为x厘米,y厘米,z厘米.后列出关于x,y,z的方程组,解方程组便可求出结果.(解略)反思:解这个题时,除了要用三角形内切圆的概念和之外,还要用到解方程组的知识,是一道综合性较强的计算题.通过对本题的研究培养学生的综合应用知识的能力.(三)小结1、提出问题学生归纳(1)这节课学习的具体内容;(2)学习用的数学思想方法;(3)应注意哪些概念之间的区别?2、归纳基本图形的结论3、学习了用代数方法解决几何问题的思想方法.参考资料,少熬夜!(四)作业教材P131习题组1.(1),2,3,组1题.探究活动图中找错你能找出(图1)与(图2)的错误所在吗?在图2中,P1A为⊙O1和⊙O3的切线、P1B为⊙O1和⊙O2的切线、P2C为⊙O2和⊙O3的切线.提示:在图1中,连结PC、PD,则PC、PD都是圆的直径,从圆上一点只能作一条直径,所以此图是一张错图,点O应在圆上.在图2中,设P1A=P1B=a,P2B=P2C=b,P3A=P3C=c,则有a=P1A=P1P3+P3A=P1P3+c①c=P3C=P2P3+P3A=P2P3+b②a=P1B=P1P2+P2B=P1P2+b③将②代人①式得a=P1P3+(P2P3+b)=P1P3+P2P3+b,∴a-b=P1P3+P2P3由③得a-b=P1P2得∴P1P2=P2P3+P1P3∴P1、P2、P3应重合,故图2是错误的。
本文标题:初三数学切线长定理教案
链接地址:https://www.777doc.com/doc-9656291 .html