您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 高中数学教学设计范例(精选5篇)
好范文解忧愁1/21高中数学教学设计范例(精选5篇)【前言】本站网友为您精挑细选分享的优秀文档“高中数学教学设计范例(精选5篇)”以供您参考学习使用,希望这篇文档对您有所帮助,喜欢的话就分享给朋友们一起学习吧!高中数学教学设计范例【第一篇】教学准备教学目标解三角形及应用举例教学重难点解三角形及应用举例教学过程一。基础知识精讲掌握三角形有关的定理利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;好范文解忧愁2/21(2)已知两边和它们的夹角,求第三边和其他两角。掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题。二。问题讨论思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论。思维点拨::三角形中的三角变换,应灵活运用正、余弦定理,在求值时,要利用三角函数的有关性质。例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向300km的海面P处,并以20km/h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增加,问几小时后该城市开始受到台风的侵袭。一。小结:1、利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);2、利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;好范文解忧愁3/21(2)已知两边和它们的夹角,求第三边和其他两角。3、边角互化是解三角形问题常用的手段。二。作业:P80闯关训练高中数学教学设计【第二篇】学习目标明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决的实际问题。学习过程一、学前准备复习:1、(课本P28A13)填空:(1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是;(2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是;(3)5名工人要在3天中各自选择1天休息,不同方法的种数是;(4)集合A有个元素,集合B有个元素,从两个集合中各取1个元素,不同方法的种数是;好范文解忧愁4/21二、新课导学◆探究新知(复习教材P14~P25,找出疑惑之处)问题1:判断下列问题哪个是排列问题,哪个是组合问题:(1)从4个风景点中选出2个安排游览,有多少种不同的方法?(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?◆应用示例例1.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?例位同学站成一排,分别求出符合下列要求的不同排法的种数。(1)甲站在中间;(2)甲、乙必须相邻;(3)甲在乙的左边(但不一定相邻);(4)甲、乙必须相邻,且丙不能站在排头和排尾;(5)甲、乙、丙相邻;(6)甲、乙不相邻;(7)甲、乙、丙两两不相邻。◆反馈练习好范文解忧愁5/211、(课本P40A4)某学生邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列3、马路上有12盏灯,为了节约用电,可以熄灭其中3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,那么熄灯方法共有______种。当堂检测1、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目。如果将这两个节目插入原节目单中,那么不同插法的种数为()2、(课本P40A7)书架上有4本不同的数学书,5本不同的物理书,3本不同的化学书,全部排在同一层,如果不使同类的书分开,一共有多少种排法?课后作业1、(课本P41B2)用数字0,1,2,3,4,5组成没有重复数字的数,问:(1)能够组成多少个六位奇数?(2)能够组成多少个大于201345的正整数?2、(课本P41B4)某种产品的加工需要经过5道工序,问:(1)如果其中某一工序不能放在最后,有多少种排列加工顺序的方法?(2)如果其中两道工序既不能好范文解忧愁6/21放在最前,也不能放在最后,有多少种排列加工顺序的方法?高中数学教学设计题模板【第三篇】高中数学教学设计——函数的奇偶性函数的奇偶性是函数的重要性质,是对函数概念的深化。它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称。这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析。教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义。然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例。最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系。这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性。教学目标1、通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力。2、理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的好范文解忧愁7/21奇偶性。3、在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的。任务分析这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数,(k≠0),二次函数y=ax,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解。在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔。对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数。关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果。教学设计一、问题情景1、观察如下两图,思考并讨论以下问题:(1)这两个函数图像有什么共同特征?(2)相应的两个函数值对应表是如何体现这些特好范文解忧愁8/21征的?可以看到两个函数的图像都关于y轴对称。从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同。对于函数f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1)。事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x)。此时,称函数y=x2为偶函数。2、观察函数f(x)=x和f(x)=的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征。22可以看到两个函数的图像都关于原点对称。函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x)。此时,称函数y=f(x)为奇函数。二、建立模型由上面的分析讨论引导学生建立奇函数、偶函数的定义1.奇、偶函数的定义如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数。如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数。2、提出问题,组织学生讨论好范文解忧愁9/21(1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗?(f(x)不一定是偶函数)(2)奇、偶函数的图像有什么特征?(奇、偶函数的图像分别关于原点、y轴对称)(3)奇、偶函数的定义域有什么特征?(奇、偶函数的定义域关于原点对称)三、解释应用[例题]1、判断下列函数的奇偶性。注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1]。2、已知:定义在R上的函数f(x)是奇函数,当x0时,f(x)=x(1+x),求f(x)的表达式。解:(1)任取x0,∴f(-x)=-x(1-x),而f(x)是奇函数,∴f(-x)=-f(x)。∴f(x)=x(1-x)。(2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.3、已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论。解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下:任取x1x20,则-x1∵f(x)在(-∞,0)上是好范文解忧愁10/21减函数,∴f(-x1)f(-x2)。又f(x)是偶函数,∴f(x1)f(x2)。∴f(x)在(0,+∞)上是增函数。思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?[练习]1、已知:函数f(x)是奇函数,在[a,b]上是增函数(ba0),问f(x)在[-b,-a]上的单调性如何。(x)=-x3|x|的大致图像可能是()3、函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数。(2)函数f(x)是奇函数。4.设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式。四、拓展延伸1、有既是奇函数,又是偶函数的函数吗?若有,有多少个?2.设f(x),g(x)分别是R上的奇函数,偶函数,试研究:(1)F(x)=f(x)·g(x)的奇偶性。(2)G(x)=|f(x)|+g(x)的奇偶性。3、已知a∈R,f(x)=a-,试确定a的值,使f(x)是奇函数。好范文解忧愁11/214、一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?高中数学优秀教学设计【第四篇】一、目标1、知识与技能(1)理解流程图的顺序结构和选择结构。(2)能用字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图2、过程与方法学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。3、情感、态度与价值观学生通过动手作图,。用自然语言表示算法,用图表示算法。进一步体会算法的基本思想——程序化思想,在归纳概括中培养学生的逻辑思维能力。二、重点、难点重点:算法的顺序结构与选择结构。难点:用含有选择结构的流程图表示算法。三、学法与教学用具学法:学生通过动手作图,。用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、好范文解忧愁12/21直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。教学用具:尺规作图工具,多媒体。四、教学思路(一)、问题引入揭示题例1尺规作图,确定线段的一个5等分点。要求:同桌一人作图,一人写算法,并请学生说出答案。提问:用字语言写出算法有何感受?引导学生体验到:显得冗长,不方便、不简洁。教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。本节要学习的是顺序结构与选择结构。右图即是同流程图表示的算法。(二)、观察类比理解题1、投影介绍流程图的符号、名称及功能说明。符号符号名称功能说明终端框算法开始与结束处理框算法的各种处理操作判断框算法的各种转移输入输出框输入输出操作好范文解忧愁13/21指向线指向另一操作2、讲授顺序结构及选择结构的概念及流程图(1)顺序结构依照步骤依次执行的一个算法流程图:(2)选择结构对条进行判断决定后面的步骤的结构流程图:3、用自然语言表示算法与用流程图表示算法的比较(1)半径为r的圆的面积公式当r=10时写出计算圆的面积的算法,并画出流程图。解:算法(自然语言)①把10赋与
本文标题:高中数学教学设计范例(精选5篇)
链接地址:https://www.777doc.com/doc-9829376 .html