您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 初中数学精编教案设计(精编3篇)
写作好帮手1/20初中数学精编教案设计(精编3篇)【导读】这篇文档“初中数学精编教案设计(精编3篇)”由三一刀客最美丽善良的网友为您分享整理的,供您参考学习,希望这篇文档对您有所帮助,喜欢就分享给朋友们下载吧!初中数学教学设计1一、内容简介本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。关键信息:1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。写作好帮手2/20二、学习者分析:1、在学习本课之前应具备的基本知识和技能:①同类项的定义。②合并同类项法则③多项式乘以多项式法则。2、学习者对即将学习的内容已经具备的水平:在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。三、教学/学习目标及其对应的课程标准:(一)教学目标:1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。2、会推导完全平方公式,并能运用公式进行简单的计算。(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。(四)解决问题:能结合具体情景发现并提出数学写作好帮手3/20问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。四、教育理念和教学方式:1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。教学是师生交往、积极互动、共同发展的过程。当学生迷路的时候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。2、采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。3、教学评价方式:写作好帮手4/20(1)通过课堂观察,关注学生在观察、总结、训练等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。(2)通过判断和举例,给学生更多机会,在自然放松的状态下,揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。(3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的教学效果。五、教学媒体:多媒体六、教学和活动过程:教学过程设计如下:〈一〉、提出问题[引入]同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?(2m+3n)2=_______________,(-2m-3n)2=______________,(2m-3n)2=_______________,(-2m+3n)2=_______________。写作好帮手5/20〈二〉、分析问题1、[学生回答]分组交流、讨论(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。(1)原式的特点。(2)结果的项数特点。(3)三项系数的特点(特别是符号的特点)。(4)三项与原多项式中两个单项式的关系。2、[学生回答]总结完全平方公式的语言描述:两数和的平方,等于它们平方的和,加上它们乘积的两倍;两数差的平方,等于它们平方的和,减去它们乘积的两倍。3、[学生回答]完全平方公式的数学表达式:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.〈三〉、运用公式,解决问题1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)(m+n)2=____________,(m-n)2=_______________,写作好帮手6/20(-m+n)2=____________,(-m-n)2=______________,(a+3)2=______________,(-c+5)2=______________,(-7-a)2=______________,()2=______________.2、判断:()①(a-2b)2=a2-2ab+b2()②(2m+n)2=2m2+4mn+n2()③(-n-3m)2=n2-6mn+9m2()④(5a+)2=25a2+5ab+()⑤()2=5a2-5ab+()⑥(-a-2b)2=(a+2b)2()⑦(2a-4b)2=(4a-2b)2()⑧(-5m+n)2=(-n+5m)23、小试牛刀①(x+y)2=______________;②(-y-x)2=_______________;③(2x+3)2=_____________;④(3a-2)2=_______________;⑤(2x+3y)2=____________;⑥(4x-5y)2=____________写作好帮手7/20__;⑦(+n)2=___________;⑧()2=_____________.〈四〉、[学生小结]你认为完全平方公式在应用过程中,需要注意那些问题?(1)公式右边共有3项。(2)两个平方项符号永远为正。(3)中间项的符号由等号左边的两项符号是否相同决定。(4)中间项是等号左边两项乘积的2倍。〈五〉、冒险岛:(1)(-3a+2b)2=________________________________(2)(-7-2m)2=__________________________________(3)(-+2n)2=_______________________________(4)(3/5a-1/2b)2=________________________________(5)(mn+3)2=__________________________________(6)()2=_________________________________(7)写作好帮手8/20(2xy2-3x2y)2=_______________________________(8)(2n3-3m3)2=________________________________〈六〉、学生自我评价[小结]通过本节课的学习,你有什么收获和感悟?本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。〈七〉[作业]P34随堂练习P36习题七、课后反思本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用。为完全平方公式第二节课的实际应用和提高应用做好充分的准备初中数学教学设计2教学目标写作好帮手9/201、知识与技能:(1)理解一元一次不等式组及其解集的意义;(2)掌握一元一次不等式组的解法。2、过程与方法:(1)经历通过具体问题抽象出不等式组的过程,培养学生逐步形成分析问题和解决问题的能力。(2)经历一元一次不等式组解集的探究过程,培养学生的观察能力和数形结合的思想方法,渗透类比和化归思想。3、情感、态度与价值观:(1)感受数形结合思想在数学学习中的作用,养成自主探究的良好学习习惯。(2)学生在解不等式组的过程中体会用数学解决问题的直观美和简洁美。学情分析本节讨论的对象是一元一次不等式组。几个一元一次不等式合在一起,就得到一元一次不等式组。从组成成员上看,一元一次不等式组是在一元一次不等式基础上发展的新概念;从组成形式上看,一元一次不等式组与第八章学习的方程组有类似之处,都是同时满足几个数量关系,所求的都是集合不等式解集的公共部分或几个方程的公共解。因此,在本节教学中应注意前面的基写作好帮手10/20础,让学生借助对已学知识的认识学习新知识。另外,本节课是在学生学习了一元一次方程、二元一次方程组和一元一次不等式之后的又一次数学建模思想学习,是今后利用一元一次不等式组解决实际问题的关键,是后续学习一元二次方程、函数的重要基础,具有承前启后的重要作用。另外,在整个学习过程中数轴起着不可替代的作用,处处渗透着数形结合的思想,这种数形结合的思想对学生今后学习数学有着重要的影响。重点难点1、教学重点:对一元一次不等式组解集的认识及其解法。2、教学难点:对一元一次不等式组解集的认识及确定。3、教学关键:利用数轴确定不等式组中各个不等式解集的公共部分。4、教学过程第一学时教学活动活动1导入温故知新教师提问:1、什么是一元一次不等式?2、什么是一元一次不等式的解集?写作好帮手11/203、如何求一元一次不等式的解集?针对性练习:(设计意图:检验学生是否理解和掌握一元一次不等式的相关概念,为本节新课内容的学习做好铺垫。同时对解不等式中的相关要点加以强调:①解不等式中,系数化为1时不等号的方向是否要改变;②在数轴上表示解集时“实心圆点”和“空心圆圈”的选择;③要正确理解利用数轴表示出来的不等式解集的几何意义。)活动2讲授创设问题情景,探索新知1、问题(课本第127页):用每分钟可抽30t水的抽水机来抽污水管道里积存的污水,估计积存的污水超过1200t而不足1500t,那么将污水抽完所用时间的范围是什么?(设计意图:结合生活实例,让学生经历通过具体问题抽象出不等式组的过程,即经历知识的拓展过程,让学生体会到数学学习的内容是现实的、有意义的、富有挑战性的。)2、引导学生找出问题中“积存的污水”需同时满足的两个不等关系:超过1200t和不足1500t。3、问题1:如何用数学式子表示这两个不等关系?1)引导学生一起把这个实际问题转换为数学模型:写作好帮手12/20满足一个不等关系我们可列一个不等式,满足两个不等关系可以列出两个不等式。设用xmin将污水抽完,则x需同时满足以下两个不等式:30x1200,①30x2)教师归纳一元一次不等式组的意义:由于未知数x需同时满足上述两个不等式,那么类似于方程组,我们把这样两个不等式合起来,就组成一个一元一次不等式组。(设计意图:把实际问题转换为数学模型,同时让学生根据一元一次不等式和二元一次方程组的有关概念来类推一元一次不等式组的有关概念,渗透类比和化归思想。)4、问题2:怎样确定不等式组中既满足不等式①同时又满足不等式②的x的可取值范围?1)教师分析:对于一元一次不等式组来说,组成不等式组的每一个不等式中都只含有一个未知数,运用前面解一元一次不等式的知识,我们就能直接求出不等式组中的每一个一元一次不等式的解集。2)得到解不等式组的第一个步骤:分别直接求出这两个不等式的解集。学生自行求解:由不等式①,解得x40写作好帮手13/20由不等式②,解得x3)教师引导学生根据题意,容易得到:在这两个解集中,由于未知数x既要满足x40,也要同时满足x40和x(设计意图:让学生在教师的引导下探究不等式组的解集及其解法,养成自主探究的良好学习习惯。)5、问题3:如何求得这两个解集的公共部分?学生活动:将不等式①和②的解集在同一条数轴上分别表示出来。(设计意图:启发学生可利用数轴的直观性帮助我们寻找这两个不等
本文标题:初中数学精编教案设计(精编3篇)
链接地址:https://www.777doc.com/doc-9831042 .html