您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 工作范文 > 方程教学设计【热选4篇】
方程教学设计【热选4篇】【导读】这篇文档“方程教学设计【热选4篇】”由三一刀客最漂亮的网友为您分享整理,希望这篇范文对您有所帮助,喜欢就下载吧!圆的标准方程教学设计doc【第一篇】《4.1.1圆的标准方程》教学设计清镇市红枫中学邵国荣一、教学目标:1.知识与技能(1)掌握圆的标准方程,能根据圆心、半径写出圆的标准方程;(2)会用待定系数法求圆的标准方程。2.过程与方法通过圆的标准方程解决实际问题的学习,进一步培养学生能用解析法研究几何问题的能力,注意培养学生观察问题、发现问题和解决数学问题的能力。3.情感、态度与价值观通过应用圆的知识解决实际问题的学习从而激发学生学习数学的热情和兴趣。二、教学重难点:重点:掌握圆的标准方程的推导及求法。难点:根据不同的已知条件,利用待定系数法求圆的标准方程。三、教学方法:启发式、讲练结合。四、教学过程:(一)创设情境,导入新课在直角坐标系中,确定圆的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么?什么叫圆?圆的定义:平面内到定点的距离等于定长的点的集合。在平面直角坐标系中,任何一条直线都可以用一个一元二次方程来表示,那么圆是否也可以用一个方程来表示呢?如果能,这个方程又有什么特征呢?(二)师生互动,探究新知确定圆的基本要素为圆心和半径,设圆的圆心坐标为A(a,b),半径为r(其中a,b,r都是常数),r0.设M(x,y)为这个圆上一点,那么点M满足的条件是(引导学生自己列出),由两点间的距离公式让学生写出点M适合的条件①化简可得:2②2引导学生自己证明为圆的方程,得出结论:方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫圆的标准方程。当圆心在原点时,圆的标准方程为。(三)概念辨析,巩固提高例1.写出圆心为A(2,-3),半径等于5的圆的方程,并判断点M是否在这个圆上。分析探究:可以从计算点到圆心的距离入手。探究:点M(1)与圆的关系的判断方法:点在圆外点在圆上点在圆内22222例的三个顶点的坐标是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程。分析:从圆的标准方程,可知,要确定圆的标准方程,可用待定系数法确定a,b,r三个参数(学生自己运算解决)例3.已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心在上,求圆心为C的圆的标准方程。分析:确定一个圆只需要确定圆心位置与半径大小。圆心为C的圆经过点A(1,1),B(2,-2),由于圆心C与A,B两点的距离相等,所以圆心C在线段AB的垂直平分线m上,又圆心C在直线l上,因此圆心C是直线l与直线m的交点,半径长等于CA或CB。总结归纳:(教师归纳,学生自己比较、归纳),比较例2、例3可得出外接圆的标准方程的两种求法:(1).根据题设条件,列出关于a,b,r的方程组,解方程组得到a,b,r的值,写出圆的标准方程;(2).根据确定圆的要求,以及题设条件,分别求出圆心坐标和圆的半径大小,然后写出圆的标准方程。练习:课本P121第1,3,4题(四)小结:1.圆的标准方程的结构特征。2.点与圆的位置关系的判断方法。3.求圆的标准方程的方法:(1)待定系数法;(2)代入法。(五)作业:P120,P121练习1,2,3,4圆的标准方程教学目标【第二篇】圆的标准方程教学目标(一)知识目标1.掌握圆的标准方程:根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径;2.理解并掌握切线方程的探求过程和方法。(二)能力目标1.进一步培养学生用坐标法研究几何问题的能力;2.通过教学,使学生学习运用观察、类比、联想、猜测、证明等合情推理方法,提高学生运算能力、逻辑思维能力;3.通过运用圆的标准方程解决实际问题的学习,培养学生观察问题、发现问题及分析、解决问题的能力。(三)情感目标通过运用圆的知识解决实际问题的学习,理解理论来源于实践,充分调动学生学习数学的热情,激发学生自主探究问题的兴趣,同时培养学生勇于探索、坚忍不拔的意志品质。教学重、难点(一)教学重点圆的标准方程的理解、掌握。(二)教学难点圆的标准方程的应用。教学方法选用引导―探究式的教学方法。教学手段借助多媒体进行辅助教学。教学过程Ⅰ.复习提问、引入课题师:前面我们学习了曲线和方程的关系及求曲线方程的方法。请同学们考虑:如何求适合某种条件的点的轨迹?生:①建立适当的直角坐标系,设曲线上任一点M的坐标为(x,y);②写出适合某种条件p的点M的集合P={M︳p(M)};③用坐标表示条件,列出方程f(x,y)=0;④化简方程f(x,y)=0为最简形式。⑤证明以化简后方程的解为坐标的点都是曲线上的点(一般省略)。[多媒体演示]师:这就是建系、设点、列式、化简四步曲。用这四步曲我们可以求适合某种条件的任何曲线方程,今天我们来看圆这种曲线的方程。[给出标题]师:前面我们曾证明过圆心在原点,半径为5的圆的方程:x2+y2=52即x2+y2=25.若半径发生变化,圆的方程又是怎样的?能否写出圆心在原点,半径为r的圆的方程?生:x2+y2=r2.师:你是怎样得到的?(引导启发)圆上的点满足什么条件?生:圆上的任一点到圆心的距离等于半径。即,亦即x2+y2=r2.师:x2+y2=r2表示的圆的位置比较特殊:圆心在原点,半径为r.有时圆心不在原点,若此圆的圆心移至C(a,b)点(如图),方程又是怎样的?生:此圆是到点C(a,b)的距离等于半径r的点的集合,由两点间的距离公式得即:(x-a)2+(y-b)2=r2Ⅱ.讲授新课、尝试练习师:方程(x-a)2+(y-b)2=r2叫做圆的标准方程.?特别:当圆心在原点,半径为r时,圆的标准方程为:x2+y2=r2.师:圆的标准方程由哪些量决定?生:由圆心坐标(a,b)及半径r决定。师:很好!实际上圆心和半径分别决定圆的位置和大小。由此可见,要确定圆的方程,只需确定a、b、r这三个独立变量即可。1、写出下列各圆的标准方程:[多媒体演示]①圆心在原点,半径是3:________________________②圆心在点C(3,4),半径是:______________________③经过点P(5,1),圆心在点C(8,-3):_______________________2、?变式题[多媒体演示]①求以C(1,3)为圆心,并且和直线3x-4y-7=0相切的圆的方程。答案:(x-1)2+(y-3)2=②已知圆的方程是(x-a)2+y2=a2,写出圆心坐标和半径。答案:C(a,0),?r=|a|Ⅲ.例题分析、巩固应用师:下面我们通过例题来看看圆的标准方程的应用.[例1]已知圆的方程是x2+y2=17,求经过圆上一点P(,)的切线的方程。师:你打算怎样求过P点的切线方程?生:要求经过一点的直线方程,可利用直线的点斜式来求。师:斜率怎样求?生:。。。师:已知条件有哪些?能利用吗?不妨结合图形来看看(如图)生:切线与过切点的半径垂直,故斜率互为负倒数?半径OP的斜率K1=,所以切线的斜率K=-=-所以所求切线方程:y-=-(x-)即:x+y=17(教师板书)师:对照圆的方程x2+y2=17和经过点P(,)的切线方程x+y=17,你能作出怎样的猜想?生:。。。?师:由x2+y2=17怎样写出切线方程x+y=17,与已知点P(,)有何关系?(若看不出来,再看一例)[例1/]?圆的方程是x2+y2=13,求过此圆上一点(2,3)的切线方程。答案:2x+3y=13?即:2x+3y-13=0师:发现规律了吗?(学生纷纷举手回答)生:分别用切点的横坐标和纵坐标代替圆方程中的一个x和一个y,便得到了切线方程。师:若将已知条件中圆半径改为r,点改为圆上任一点(xo,yo),则结论将会发生怎样的变化?大胆地猜一猜!生:xox+yoy=r2.师:这个猜想对不对?若对,可否给出证明?生:。。。[例2]已知圆的方程是x2+y2=r2,求经过圆上一点P(xo,yo)的切线的方程。解:如图(上一页),因为切线与过切点的半径垂直,故半径OP的斜率与切线的斜率互为负倒数?∵半径OP的斜率K1=,∴切线的斜率K=-=-∴所求切线方程:y-yo=-(x-xo)即:xox+yoy=xo2+yo2亦即:xox+yoy=r2.(教师板书)?当点P在坐标轴上时,可以验证上面方程同样适用。归纳总结:圆的方程可看成x.x+y.y=r2,将其中一个x、y用切点的坐标xo、yo替换,可得到切线方程[例3]右图为某圆拱桥的一孔圆拱的示意图.该圆拱跨度AB=20M,拱高OP=4M,在建造时每隔4M需用一个支柱支撑,求支柱A2P2的长度。(精确到0.01M)引导学生分析,共同完成解答。师生分析:①建系;②设圆的标准方程(待定系数);③求系数(求出圆的标准方程);④利用方程求A2P2的长度。解:以AB所在直线为X轴,O为坐标原点,建立如图所示的坐标系。则圆心在Y轴上,设为(0,b),半径为r,那么圆的方程是??x2+(y-b)2=r2.∵P(0,4),B(10,0)都在圆上,于是得到方程组:?解得:b=-10.5,r2=14.52∴圆的方程为x2+(y+10.5)2=14.52.将P2的横坐标x=-2代入圆的标准方程且取y0得:y=≈14.36-10.5=3.86(M)答:支柱A2P2的长度约为3.86M。Ⅳ.课堂练习、课时小结课本P77练习2,3师:通过本节学习,要求大家掌握圆的标准方程,理解并掌握切线方程的探求过程和方法,能运用圆的方程解决实际问题.Ⅴ.问题延伸、课后作业(一)若P(xo,yo)在圆(x-a)2+(y-b)2=r2上时,試求过P点的圆的切线方程。课本P81习题7.7:1,2,3,4(二)预习课本P77~P79?教学设计说明在教学过程中,教师遵循数学发展规律,并依据建构主义教育理论,创设一系列数学实验环境,在情境中让学生观察、类比、猜想、尝试、探索、归纳并引导加以证明,强调主动建构,从深层次加强学生对知识的感知度,使学生能更好地理解和掌握圆的标准方程。设计理念:设计的根本出发点是促进学生的发展。教师以合作者的身份参与,课堂上建立平等、互助、融洽的关系,师生共同研究,共同提高。设计思路:本节课的设计与教材的呈现方式有所不同,教材只是教学的蓝本,教师在理解教材编写意图的基础上,应发挥主观能动作用,对教材资源进行再加工、再创造,这样教学有利于认知结构与知识结构的有机结合,也有利于学生从深层次理解和掌握圆的标准方程。鉴于此,本节在给出圆的标准方程的过程中,运用简单、特殊的到复杂、一般的数学思想,使用了观察、猜测、经验归纳等方法进行合情地推理,同时引导学生对照圆的几何形状,观察和欣赏圆的方程,体会数学中的美——对称、简洁。圆的标准方程的应用是本节的难点。为了突破难点,设计三个例题。第一、二个例题,从特殊到一般给出切线方程,培养学生探究问题的兴趣,不断完善自己的认知结构。第三个例题,充分利用多媒体的动感演示,刺激学生的感官,引起更强的注意,从而使学生理解理论来源于实践,充分调动学生学习数学的热情,激发学生自主探究问题的兴趣,增强应用意识;同时培养学生勇于探索、坚忍不拔的意志品质。最后设计了“问题延伸”,让学生带着问题走进课堂,又带着问题走出课堂,激发学生不断求知、不断探索的欲望。在整个教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来,教师的每项措施都是为了力求给学生创造一种思维情境,一种动手、动脑、动口并且主动参与学习的机会,激发学生求知的欲望,促使学生掌握知识,解决问题。圆的标准方程获奖教学设计【第三篇】圆的标准方程教学设计教材分析本节内容位于曲线的方程和方程之后,是求具体曲线的方程。同时,本节课的研究方法为以后学习椭圆、双曲线、抛物线提供了一个基本模式,因此,可以把圆看作是圆锥曲线的前奏曲。学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作
本文标题:方程教学设计【热选4篇】
链接地址:https://www.777doc.com/doc-10287690 .html