您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 工作范文 > 数学概念如何展开教学设计5篇
数学概念如何展开教学设计5篇【导读】这篇文档“数学概念如何展开教学设计5篇”由三一刀客最漂亮的网友为您分享整理,希望这篇范文对您有所帮助,喜欢就下载吧!数学概念如何展开教学设计1数学概念如何展开教学设计数学概念比较抽象,初中学生由于年龄、生活经验和智力发展等方面的限制,要接受教材中的所有概念是不容易的.况且有的教师在教学过程中,不注意结合学生心理发展特点去分析事物的本质特征,只是照本宣科地提出概念的正确定义,缺乏生动的讲解和形象的比喻,对某些概念讲解不够透彻,使得一些学生对概念常常是一知半解、模糊不清,也就无法对概念正确地理解、记忆和应用.下面就如何做好数学概念的教学谈几点体会.一、概念的引入探究数学概念产生的实际背景(其实质就是概念的引入),是进行数学概念教学的第一步,这一步走的如何,对学生学好数学概念有重要的作用。概念的引入是概念课教学的起始步骤,是形成概念的基础。传统教学中在教学方式上是以教师传授为主,学生被动接受学习,这显然不利于新课程背景下创造型人才的培养。课程标准中提出“抽象数学概念的教学,要关注概念的实际背景与形成过程,帮助学生克服机械记忆概念的学习方式”。通过概念引入过程的教学,应该使学生明确:“概念在生活中的实际背景是什么?”“为什么引入这一概念”以及“将如何建立这一概念”,从而使学生明确活动目的,激发学习兴趣,提取有关知识,为建立概念的复杂智力活动做好心理准备。在引入过程中教师要积极地为学生创设有利于他们理解数学概念的各种情境,给学生提供广阔的思维空间,让他们逐渐养成主动探究的习惯,从而实现新课程标准中提出的通过主动探究来获取知识,使学生的学习活动不再单纯地依赖于教师的讲授,教师努力成为学习的参与者、协作者、促进者和组织者。1.运用具体实物或模型,形象地讲述新概念概念属于理性认识,它的形成依赖于感性认识,学生的心理特点是容易理解和接受具体的感性认识.教学过程中,各种形式的直观教学是提供丰富、正确的感性认识的主要途径.所以在讲述新概念时,从引导学生观察和分析有关具体实物入手,比较容易揭示概念的本质和特征.例如,在讲解“梯形”的概念时,教师可结合学生的生活实际,引入梯形的典型实例(如梯子、堤坝的横截面等),再画出梯形的标准图形,让学生获得梯形的感性知识.这种形象的讲述符合认识规律,学生容易理解,给学生留下的印象也比较深刻.联系概念的现实原理引入新概念。在教学中引导学生观察有关实物、模型、图示等,让学生在感性认识的基础上,建立概念,理解概念的实际内容,搞清楚这些概念是从什么问题上提出来的。例如:在平面几何平行线的教学中,可以让学生观察单线练习本中的一组平行线,分析这组线的位置特点,再利用相交线作对比,然后概括出平行线的定义;在圆的概念的教学时,让学生动手做实验,取一条定长的细绳,把它的一端固定,另一端栓一支铅笔,拉紧绳子,移动笔尖,画出的图形是什么?学生通过动手实践,观察所画出来的图形,归纳总结出圆的定义。2.从具体到抽象引入新概念。数学概念有具体性和抽象性双重特性。在教学中就可以从它具体性的一面入手,使学生形成抽象的数学概念。例如:在讲线线垂直的概念时,先让学生观察教室或生活中的各种实例,再模拟出线线垂直的模型,抽象出其本质特征,概括出线线垂直的定义,并画出直观图,即沿着实例、模型、图形直至想像的顺序抽象成正确的概念,再比如对于一元一次方程的概念,可以借助一些简单的实例,让学生列方程,然后观察这些具体方程的共同点,从具体到抽象归纳概括出一元一次方程的定义。3.用类比的方法引入概念。类比不仅是一种重要形式,而且是引入新概念的重要方法。例如:可以通过同类项的定义类比地归纳出同类二次根式的定义,通过类比分数得到分式的概念,类比一元一次方程得到一元一次不等式、二元一次方程、一元二次方程、一次函数等概念。作这样的类比更有利于学生理解和区别概念,在对比之下,既掌握了概念,又可以减少概念的混淆。事先让每位学生准备一张三角形纸片和剪刀,课上让学生思考,只剪一刀,将剪成的两张纸片拼成一个平行四边形。学生很乐于参与这种动手操作的活动,根据生活经验也不难完成活动(如图),但当教师提出“说说你的裁剪方法”时,学生只能用生活语言,如“沿三角形的中间剪的”,说不出准确的数学语言。此时教师引导学生观察裁剪线的端点具有什么样的特征?有实物模型加上学生动手剪拼,可以得到D、E均为各边的中点。那么,它能叫中线吗?如果不能,我们可以给它起个什么名字?让学生尝试命名,根据它位置的特殊性,学生在教师的启发下,可以得到中位线的概念。这样的设计激发了学生的探究欲望,而且为后续探究中位线的性质埋下了伏笔,可谓一举多得。由上面的分析可以看出,概念的引入方式没有统一的模式,总的原则是通过教师创设典型、丰富的具体实例(可以让学生自己举例),引导学生展开分析、比较、综合等活动,在此基础上,概括出共同本质特征,得到概念的本质属性。为了激发学生的学习兴趣,促进学生的思考,引入的形式应该多种多样,可以是问题导入、游戏导入、史话导入等等。概念的引入方法很多,设计时不仅要考虑概念自身的特点,还要结合学生的认识水平及生活经验,本着有利于突显概念本质的原则。二、理解新概念1.对概念的剖析及辨析刚刚对新概念的学习之后,要想理解概念,首先应该是对概念的剖析及辨析,概念生成之后,应用概念解决问题之前,往往要进行概念剖析,即用实例(包括正例与反例)引导学生分析关键词的含义,包括对概念特性的考察,可以达到明确概念、再次认识概念本质的目的,在剖析概念时通常要对概念的多种表示语言进行转化,数学语言主要是文字叙述、符号表示、图形表示,要会三者的翻译,同时更重要的是强调符号感。还可以从中体会概念中所呈现的转化问题的方法,这是最基本、最重要的方法。2.利用概念中的关键字、词,帮助学生理解概念数学概念中的某些字、词的含义,为我们提供了记忆概念本质属性的直观材料,强调概念中具有这种特征的字和词,能有效地理解和记忆概念的本质特征.例如,“一元二次方程”这个概念本身具有“一元”、“二次”、“方程”3个关键词,抓住这3个特征,学生自然也就掌握了这个概念.又如三角形的内切圆、外接圆中的“内”、“外”分别指出了圆在三角形内部、外部;“切”、“接”分别指出了圆与三角形的3条边相切,圆与三角形的3个顶点相接.教学中着重强调这些字词,使学生一看到这一概念,就会联想到这一概念是如何定义的3.通过比较,使学生正确地理解概念如果说变式是从材料方面促进学生的理解,比较则是从方法方面促进学生的理解.对于一些容易混淆的概念,通过比较可以了解它们之间的区别与联系,使其本质特征更清晰.例如,在讲解梯形的概念时,可要求学生比较梯形与平行四边形两种图形的相同点和不同点.学生通过比较和总结不难得出,两种图形的相同点是:它们都是四边形,都至少有一组对边平行;不同点是:平行四边形的两组对边分别都平行,而梯形只有一组对边平行,另一组对边不平行.通过比较这两个概念的异同点,学生很容易抓住它们的本质属性,促进对概念的理解和记忆.教师首先要认识到,它是一个组合图形,是由特殊的平行四边形和三角形组合而成的,所以它基本上没什么性质,而是通过图形分解,转化为平行四边形和三角形来解决问题的。其次教师要将这一点传递给学生,学生如果明确了,那么也就能自觉地添加辅助线解决问题了。如果进一步能够弄清四边形与三角形如何拼成梯形,那么,对于如何添加辅助线将梯形转化为特殊的平行四边形以及三角形就不是特别困难了。4.在应用中加深对概念的理解,培养学生的数学能力对数学概念的深刻理解,是提高学生的解题能力的基础;反之,也只有通过解题,学生才能加深对概念的认识,才能更完整、更深刻地理解和掌握概念的内涵和外延.课本中直接运用概念解题的例子很多,教学中要充分利用.同时,对学生在理解方面易出错误的概念,要设计一些有针对性的题目,通过练习、讲评,使学生对概念的理解更深刻、更透彻.三、初中数学概念的教学的几点注意事项:1.概念(特别是核心概念)教学中,要把“认识数学对象的基本套路”作为核心目标之一;2.数学概念的高度抽象性,决定了其认识过程的曲折性,不可能一步到位,需要一个螺旋上升,在已有认知基础上再概括的过程;3.人类认识数学概念具有渐进性,因此学习像函数这样的核心概念时,需要区分不同年龄阶段的概括层次(如变量说、关系说、对应说等),这也是“教学要与学生认知水平相适应”的原因所在;4.为了更利于学生开展概括活动,教师要重视让学生能够自己举例,“一个好例子胜过一千条说教”;5.“细节决定成败”,必须安排概念的辨析、概念间联系的分析等过程,即要对概念的内涵进行“深加工”,对概念要素作具体界定,让学生通过对概念的正例、反例作判断,更准确的把握概念的细节;6.在概念的系统中学习概念,即要通过概念的应用,形成用概念做判断的“操作步骤”,同时建立相关概念的联系,这是一次新的概括过程。总之,对于初中数学概念的教学,没有固定的模式,正所谓教无定法,好的概念教学课没有统一的标准,可谓百花齐放,但不好的概念教学课却有统一的特征:学生只是知道某某概念,但对于其怎么来的以及如何使用并没有明确的认识。希望我们大家一起努力,使小小的概念教学中,能折射出我们教师大大的智慧。最后把前苏联数学家辛钦的一句话送给大家:我想尽力做到在引进新概念、新理论时,能尽可能的看到新概念、新理论的引入是自然的,甚至是不可避免的。我认为只有利用这种方法,在学生方面才能非形式化的理解并掌握所学到的东西。初中数学概念课堂教学设计2“学案导学”模式——初中数学“概念课”教学设计靖边六中杜兵兵摘要:“学案”的内容包括:学习目标、学法指导、知识准备、导学新知、问题讨论、归纳总结、梯度训练、拓展延伸、达标检测。当然不同类型知识和不同课型的学案都应该有各自不同的侧重点。比如概念课、定理或数学法则课、复习课等各类学案的编写,均有各自不同的组成部分,因此在编制学案的过程中也应该体现出各自的特点。而各类不同的课型中很多老师觉得概念课最难设计,但有很重要。因为数学概念是数学教材结构的最基本的因素,正确理解数学概念,是掌握数学基础知识的前提.学生如果不能正确地理解数学中的各种概念,就不能很好地掌握各种法则、公式、定理,也就不能应用所学知识去解决实际问题.因此,抓好数学概念的教学,是提高数学教学质量的关键,学生在数学学习中有一个现象:当解决数学某一问题遇到困难时,如果追根求源,就会发现,往往是由于他们在某一个或某一些概念处产生问题,而导致思维受阻。许多事实例证了正确地理解数学概念是牢固掌握数学知识,灵活运用数学知识解决问题的金钥匙。基于此,我们全体课题组成员对数学概念的本质进行分析,并且试着找到合理的概念教学的模式,以使教师的教课与学生的数学学习轻松而有成效。关键词:初中数学数学概念学案导学通过参与本次课题研究活动,使我对初中数学“学案导学”模式有更深层次的认识,所谓“学案导学”是指以学案为载体,以导学为方法,教师的指导为主导,学生的自主学习为主体,师生共同合作完成教学任务的一种教学模式。这种教学模式一改过去老师单纯的讲,学生被动的听的“满堂灌”、“满堂问”的教学模式,充分体现了教师的主导作用和学生的主题作用,是“导”与“学”的和谐统一,发挥最大效益。在这种模式中,学生根据教师设计的学案,认真认真阅读教材,了解教材内容,然后根据学案要求完成相关内容,学生可以提出自己的观点和见解,师生共同研究学习。这种模式一方面满足了学生思维发展的需要,另一方面可以完成教材大纲和课标的要求。而教师不仅仅是知识的传授者,更重要的任务是培养学生的自学能力、自学习惯,教会他们怎样学习、怎样思考,提高学生分析问题、解决问题的能力。数学概念是对客观事物的数量关系、空间形式或结构关系的特征概括,是对一类数学对象的本质属性的反映。初中数学中有大量的概念,它们是数学基础知识的重要组成部分,也是导出数学定理和数学法则的逻辑基础。数学概念比较抽象,初中学生由于年龄、生活经验和智力发展等方面的限制,要接受教材中的所有概念是不容易的.况且有的教师在教学过程中,不注意结合学生心理发展特点去分
本文标题:数学概念如何展开教学设计5篇
链接地址:https://www.777doc.com/doc-10289828 .html