您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 工作范文 > 高一数学教学计划4篇
高一数学教学计划4篇【导读】这篇文档“高一数学教学计划4篇”由三一刀客最漂亮的网友为您分享整理,希望这篇范文对您有所帮助,喜欢就下载吧!高一数学教学计划1本学期的措施及打算1.一周学习早知道。明确目标更能确定努力的方向。为了让学生学习更有目的性,有效性和积极性,每周第一节课给出一周的教学进度,学习目标和过关要求。不仅老师要做到对所教内容清楚明了,也要让学生对所学内容做到每周学习目标清晰化。2.落实“每周测试”过关制。周测内容与一周学习目标及一周的讲授内容紧密相连。未尽力而又没有过关的学生将按事先说明的措施给予处罚。以便让学生重视课堂学习,重视平时作业,重视一周的学习过程。做到让学生每周学习过程精细化。3.根据学生学力状况进行分层次的培优补差。三、教学进度安排周次学习内容目标要求1必修4第一章三角函数:第1至3节周期,角的推广及表示,弧度制及互化2军训3第4节:正弦函数单位圆,正弦函数定义,象限符号,诱导公式,五点法画图像,图像及性质。4第5节:余弦函数,第6节正切函数余弦函数正切函数定义,象限符号,诱导公式,图像及性质5第7节:的图像,第8节:同角的基本关系。图像变换规律,同角三角函数的基本关系及其运用。章节复习,章节过关测试。6第二章:平面向量:第1节至第2节向量,有向线段,向量的长及相等、平行、共线、单位向量等概念,向量的加减法运算7第3节至第5节数乘向量,基本定理,向量运算的巩固训练,平面向量的坐标表示及运算。数量积的应用。8第5节至第7节数量积的应用及坐标表示,向量应用举例。习题课,章节复习,章节过关测试。9第三章:三角恒等变换:第1节至第2节两角和差的公式得推导,记忆及灵活运用,二倍角公式得来源及运用。期中复习。10期中考试期中复习,期中考试。11第三章第3节:三角函数的简单应用试卷讲评改错,简单应用,三角恒等变换的综合习题课,练习,章节复习,必修4基本测试。12“五。一”长假13必修3第一章:统计。第1节至第5节统计的程序,统计图,统计方案设计,普查与抽样,抽样方法,分层抽样与系统抽样,花统计图表及读统计图表,数字特征:平均数,中位数,众数,级差,方差的意义及计算分析,14第6节至第9节样本对总本的估计及相应的数字特征的计算分析,统计实践活动,变量的相关性及例题分析,最小二乘估计。章节复习,章节过关测试。15第二章:算法初步:第1节至第3节基本思想,基本结构及设计,排序问题。16第4节:几种基本语句条件语句,循环语句,复习三角函数的基本内容,章节复习,三角函数与算法初步过关测试。17第三章:概率:第1节至第2节频率,概率,古典概率,概率计算公式。18第2节至第3节建概率模型,互斥事件,习题课,章节复习,章节过关测试。19期末复习20期末复习,期末考试高一数学教学计划(共4篇)如果还不能满足你的要求,请在搜索更多其他高一数学教学计划范文。高一数学教学计划2教材教法分析本节课是苏教版普通高中课程标准实验教科书数学必修(2)第2章第三节的第一节课。该课是在二维平面直角坐标系基础上的推广,是空间立体几何的代数化。教材通过一个实际问题的分析和解决,让学生感受建立空间直角坐标系的必要性,内容由浅入深、环环相扣,体现了知识的发生、发展的过程,能够很好的诱导学生积极地参与到知识的探究过程中。同时,通过对《空间直角坐标系》的学习和掌握将对今后学习本节内容《空间两点间的距离》和选修2—1内容《空间中的向量与立体几何》有着铺垫作用。由此,本课打算通过师生之间的合作、交流、讨论,利用类比建立起空间直角坐标系。学情分析一方面学生通过对空间几何体:柱、锥、台、球的学习,处理了空间中点、线、面的关系,初步掌握了简单几何体的直观图画法,因此头脑中已建立了一定的空间思维能力。另一方面学生刚刚学习了解析几何的基础内容:直线和圆,对建立平面直角坐标系,根据坐标利用代数的方法处理问题有了一定的认识,因此也建立了一定的转化和数形结合的思想。这两方面都为学习本课内容打下了基础。教学目标1、知识与技能①通过具体情境,使学生感受建立空间直角坐标系的必要性②了解空间直角坐标系,掌握空间点的坐标的确定方法和过程③感受类比思想在探究新知识过程中的作用2、过程与方法①结合具体问题引入,诱导学生探究②类比学习,循序渐进3、情感态度与价值观通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系和研究事物从低维到高维的一般方法。通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,不断地拓展自己的思维空间。教学重点本课是本节第一节课,关键是空间直角坐标系的'建立,对今后相关内容的学习有着直接的影响作用,所以本课教学重点确立为“空间直角坐标系的理解”。教学难点“通过建立恰当的空间直角坐标系,确定空间点的坐标”。先通过具体问题回顾平面直角坐标系,使学生体会用坐标刻画平面内任意点的位置的方法,进而设置具体问题情境促发利用旧知解决问题的局限性,从而寻求新知,根据已有一定空间思维,所以能较容易得出“第三根轴”的建立,进而感受逐步发展得到“空间直角坐标系”的建立,再逐步掌握利用坐标表示空间任意点的位置。总得来说,关键是具体问题情境的设立,不断地让学生感受,交流,讨论。高一数学教学计划3后面为你推荐更多高一数学教学计划!一、上学期教学回顾高一共四个教学班,共计160余人。杨文国带高一(一)班,高一(二)班;张忠杰带高一(三)班和高一(四)班。其中各班期末八校联考的成绩分别为:50.6分,32.8分,27.2分,34.5分,总平36.9分。学期中途因张忠杰离开学校导致频繁更换老师,(三)班、(四)班的成绩因而受到影响。期末由王山任(三)班、(四)班的数学老师。上学期工作在学生学习的落实环节上做得不太扎实,这将是本学期重点改进的地方。二、本学期的措施及打算1.一周学习早知道。明确目标更能确定努力的方向。为了让学生学习更有目的性,有效性和积极性,每周第一节课给出一周的教学进度,学习目标和过关要求。不仅老师要做到对所教内容清楚明了,也要让学生对所学内容做到每周学习目标清晰化。2.落实“每周测试”过关制。周测内容与一周学习目标及一周的讲授内容紧密相连。未尽力而又没有过关的学生将按事先说明的措施给予处罚。以便让学生重视课堂学习,重视平时作业,重视一周的学习过程。做到让学生每周学习过程精细化。3.根据学生学力状况进行分层次的培优补差。三、教学进度安排高一数学教学计划4一设计思想:函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。二教学内容分析:本节课是《普通高中课程标准》的新增内容之一,选自《普通高中课程标准实验教课书数学I必修本(A版)》第94-95页的第三章第一课时3.1.1方程的根与函数的的零点。本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形.它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3.1.2)加以应用,通过建立函数模型以及模型的求解(3.2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系.渗透“方程与函数”思想。总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。三教学目标分析:知识与技能:1.结合方程根的几何意义,理解函数零点的定义;2.结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;3.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法情感、态度与价值观:1.让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;2.培养学生锲而不舍的探索精神和严密思考的良好学习习惯;3.使学生感受学习、探索发现的乐趣与成功感教学重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。教学难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。四教学准备导学案,自主探究,合作学习,电子交互白板。五教学过程设计:(一)、问题引人:请同学们思考这个问题。用屏幕显示判断下列方程是否有实根,有几个实根?(1);(2)学生活动:回答,思考解法。教师活动:第二个方程我们不会解怎么办?你是如何思考的?有什么想法?我们可以考虑将复杂问题简单化,将未知问题已知化,通过对第一个问题的研究,进而来解决第二个问题。对于第一个问题大家都习惯性地用代数的方法去解决,我们应该打破思维定势,走出自己给自己画定的牢笼!这样我们先把所依赖的拐杖丢掉,假如第一个方程你不会解,也不会应用判别式,你要怎样判断其实根个数呢?学生活动:思考作答。设计意图:通过设疑,让学生对高次方程的根产生好奇。(二)、概念形成:预习展示1:你能通过观察二次方程的根及相应的二次函数图象,找出方程的根,图象与轴交点的坐标以及函数零点的关系吗?学生活动:观察图像,思考作答。教师活动:我们来认真地对比一下。用投影展示学生填写表格一元二次方程方程的根二次函数函数的图象(简图)图象与轴交点的坐标函数的零点?????????问题1:你能通过观察二次方程的根及相应的二次函数图象,找出方程的根,图象与轴交点的坐标以及函数零点的关系吗?学生活动:得到方程的实数根应该是函数图象与x轴交点的横坐标的结论。教师活动:我们就把使方程成立的实数x称做函数的零点.(引出零点的概念)根据零点概念,提出问题,零点是点吗?零点与函数方程的根有何关系?学生活动:经过观察表格,得出(请学生总结)1)概念:函数的零点并不是“点”,它不是以坐标的形式出现,而是实数。例如函数的零点为x=-1,32)函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标.3)方程有实数根函数的图象与轴有交点函数有零点。教师活动:引导学生仔细体会上述结论。再提出问题:如何并根据函数零点的意义求零点?学生活动:可以解方程而得到(代数法);可以利用函数的图象找出零点.(几何法).设计意图:由学生最熟悉的二次方程和二次函数出发,发现一般规律,并尝试的去总结零点,根与交点三者的关系。(三)、探究性质:(五)、探索研究(可根据时间和学生对知识的接受程度适当调整)讨论:请大家给方程的一个解的大约范围,看谁找得范围更小?[师生互动]师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。生:分组讨论,各抒己见。在探究学习中得到数学能力的提高第五阶段设计意图:一是为用二分法求方程的近似解做准备二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。(六)、课堂小结:零点概念零点存在性的判断零点存在性定理的应用注意点:零点个数判断以及方程根所在区间(七)、巩固练习(略)
本文标题:高一数学教学计划4篇
链接地址:https://www.777doc.com/doc-10347220 .html