您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 《二次函数》数学教案【最新5篇】
好文档,供参考1/14《二次函数》数学教案【最新5篇】【题记】这篇精编的文档“《二次函数》数学教案【最新5篇】”由三一刀客最“美丽、善良”的网友上传分享,供您学习参考使用,希望这篇文档对您有所帮助,喜欢就下载分享吧!次函数教案【第一篇】I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)则称y为x的二次函数。二次函数表达式的右边通常为二次三项式。II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]好文档,供参考2/14注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-bb^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。《二次函数》教案【第二篇】教学目标:1、使学生能利用描点法正确作出函数y=ax2+b的图象。2、让学生经历二次函数y=ax2+b性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。教学重点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y=ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。教学难点:正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b与抛物线y=ax2的关系。教学过程:一、提出问题导入新课1.二次函数y=2x2的图象具有哪些性质?2.猜想二次函数y=2x2+1的图象与二次函数y好文档,供参考3/14=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、学习新知1、问题1:画出函数y=2x2和函数y=2x2+1的图象,并加以比较问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?同学试一试,教师点评。问题3:当自变量x取同一数值时,这两个函数的函数值(既y)之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,顶点坐标,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。师:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?小组相互说说(一人记录,其余组员补充)2、小组汇报:分组讨论这个函数的性质并归纳:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=1。3、做一做好文档,供参考4/14在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?三、小结1、在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系?2.你能说出函数y=ax2+k具有哪些性质?四、作业:在同一直角坐标系中,画出(1)y=-2x2与y=-2x2-2;的图像五:板书《二次函数》教案【第三篇】教学目标1、经历用三种方式表示变量之间二次函数关系的过程,体会三种方式之间的联系与各自不同的特点2、能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题3、能够根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究教学重点和难点重点:用三种方式表示变量之间二次函数关系难点:根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究教学过程设计好文档,供参考5/14一、从学生原有的认知结构提出问题这节课,我们来学习二次函数的三种表达方式。二、师生共同研究形成概念1、用函数表达式表示☆做一做书本P56矩形的周长与边长、面积的关系鼓励学生间的互相交流,一定要让学生理解周长与边长、面积的关系。比较全面、完整、简单地表示出变量之间的关系2、用表格表示☆做一做书本P56填表由于运算量比较大,学生的运算能力又一般,因此,建议把这个表格的一部分数据先给出来,让学生完成未完成的部分空格。表格表示可以清楚、直接地表示出变量之间的数值对应关系3、用图象表示☆议一议书本P56议一议关于自变量的问题,学生往往比较难理解,讲解时,可适当多花时间讲解。可以直观地表示出函数的变化过程和变化趋势☆做一做书本P574、三种方法对比好文档,供参考6/14☆议一议书本P58议一议函数的表格表示可以清楚、直接地表示出变量之间的数值对应关系;函数的图象表示可以直观地表示出函数的变化过程和变化趋势;函数的表达式可以比较全面、完整、简单地表示出变量之间的关系。这三种表示方式积压自有各自的优点,它们服务于不同的需要。在对三种表示方式进行比较时,学生的看法可能多种多样。只要他们的想法有一定的道理,教师就应予以肯定和鼓励。数学《二次函数》教案【第四篇】教学目标(一)教学知识点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。(二)能力训练要求1、经历探索二次函数与一元二次方程的关系的过好文档,供参考7/14程,培养学生的探索能力和创新精神。2、通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。3、通过学生共同观察和讨论,培养大家的合作交流意识。(三)情感与价值观要求1、经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。2、具有初步的创新精神和实践能力。教学重点1、体会方程与函数之间的联系。2、理解何时方程有两个不等的实根,两个相等的实数和没有实根。3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。教学难点1、探索方程与函数之间的联系的过程。2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。教学方法好文档,供参考8/14讨论探索法。教具准备投影片二张第一张:(记作§)第二张:(记作§)教学过程Ⅰ。创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系。当一次函数中的函数值y=0时,一次函数y=kxww+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。《二次函数》教案【第五篇】教学设计一教学设计思路通过小球飞行高度问题展示二次函数与一元二次方程的联系。然后进一步举例说明,从而得出二次函数与一元二次方程的关系。最后通过例题介绍用二次函数的图象求一元二次方程的根的方法。二教学目标好文档,供参考9/141知识与技能(1)。经历探索函数与一元二次方程的关系的过程,体会方程与函数之间的联系。总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根。(2)。会利用图象法求一元二次方程的近似解。2过程与方法经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。三情感态度价值观通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况培养学生自主探索意识,从中体会事物普遍联系的观点,进一步体会数形结合思想。四教学重点和难点重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解。难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。五教学方法讨论探索法六教学过程设计好文档,供参考10/14(一)问题的提出与解决问题如图,以20m/s的速度将小球沿与地面成30角的方向击出时,球的飞行路线将是一条抛物线。如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t5t2。考虑以下问题(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到?为什么?(4)球从飞出到落地要用多少时间?分析:由于球的飞行高度h与飞行时间t的关系是二次函数h=20t-5t2。所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值:否则,说明球的飞行高度不能达到问题中h的值。解:(1)解方程15=20t5t2。t24t+3=0。t1=1,t2=3。当球飞行1s和3s时,它的高度为15m。好文档,供参考11/14(2)解方程20=20t-5t2。t2-4t+4=0。t1=t2=2。当球飞行2s时,它的高度为20m。(3)解方程=20t-5t2。t2-4t+=0。因为(-4)。所以方程无解。球的飞行高度达不到。(4)解方程0=20t-5t2。t2-4t=0。t1=0,t2=4。当球飞行0s和4s时,它的高度为0m,即0s时球从地面飞出。4s时球落回地面。由学生小组讨论,总结出二次函数与一元二次方程的解有什么关系?例如:已知二次函数y=-x2+4x的值为3。求自变量x的值。分析可以解一元二次方程-x2+4x=3(即x2-4x+3=0)。反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4+3的值为0,求自变量x的值。一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0。(二)问题的讨论二次函数(1)y=x2+x-2;(2)y=x2-6x+9;(3)y=x2-x+0。的图象如图所示。(1)以上二次函数的图象与x轴有公共点吗?如好文档,供参考12/14果有,有多少个交点,公共点的横坐标是多少?(2)当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗?先画出以上二次函数的图象,由图像学生展开讨论,在老师的引导下回答以上的问题。可以看出:(1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1。当x取公共点的横坐标时,函数的值是0。由此得出方程x2+x-2=0的根是-2,1。(2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3。当x=3时,函数的值是0。由此得出方程x2-6x+9=0有两个相等的实数根3。(3)抛物线y=x2-x+1与x轴没有公共点,由此可知,方程x2-x+1=0没有实数根。总结:一般地,如果二次函数y=的图像与x轴相交,那么交点的横坐标就是一元二次方程=0的根。(三)归纳一般地,从二次函数y=ax2+bx+c的图象可知,(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数的值是0,因此x=x0就是方程ax2+bx+c=0的一个根。(2)二次函数的图象与x轴的位置关系有三种:好文档,供参考13/14没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。由上面的`结论,我们可以利用二次函数的图象求一元二次方程的根。由于作图或观察可能存在误差,由图象求得的根,一般是近似的。(四)例题例利用函数图象求方程x2-2x-2=0的实数根(精确到)。解:作y=x2-2x-2的图象(如图),它与x轴的公共点的横坐标大约是-,。所以方程x2-2x-2=0的实数根为,。七小结二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。。八板书设计用函数观点看一元二次方程抛物线y=ax2+bx+c与方程ax2+bx+c=0的解之间的
本文标题:《二次函数》数学教案【最新5篇】
链接地址:https://www.777doc.com/doc-10409673 .html