您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 高二数学教案最新4篇
好文档,供参考1/14高二数学教案最新4篇【题记】这篇精编的文档“高二数学教案最新4篇”由三一刀客最“美丽、善良”的网友上传分享,供您学习参考使用,希望这篇文档对您有所帮助,喜欢就下载分享吧!高二数学教案【第一篇】教学目的:1、使学生理解线段的垂直平分线的性质定理及逆定理,掌握这两个定理的关系并会用这两个定理解决有关几何问题。2、了解线段垂直平分线的轨迹问题。3、结合教学内容培养学生的动作思维、形象思维和抽象思维能力。教学重点:线段的垂直平分线性质定理及逆定理的引入证明及运用。教学难点:线段的垂直平分线性质定理及逆定理的关系。教学关键:1、垂直平分线上所有的点和线段两端点的距离相好文档,供参考2/14等。2、到线段两端点的距离相等的所有点都在这条线段的垂直平分线上。教具:投影仪及投影胶片。教学过程:一、提问1、角平分线的性质定理及逆定理是什么?2、怎样做一条线段的垂直平分线?二、新课1、请同学们在课堂练习本上做线段AB的垂直平分线EF(请一名同学在黑板上做)。2、在EF上任取一点P,连结PA、PB量出PA=?,PB=?引导学生观察这两个值有什么关系?通过学生的观察、分析得出结果PA=PB,再取一点P'试一试仍然有P'A=P'B,引导学生猜想EF上的所有点和点A、点B的距离都相等,再请同学把这一结论叙述成命题(用幻灯展示)。定理:线段的垂直平分线上的点和这条线段的两个端点的距离相等。这个命题,是我们通过作图、观察、猜想得到的,还得在理论上加以证明是真命题才能做为定理。例题:好文档,供参考3/14已知:如图,直线EF⊥AB,垂足为C,且AC=CB,点P在EF上求证:PA=PB如何证明PA=PB学生分析得出只要证RTΔPCA≌RTΔPCB答:证明:∵PC⊥AB(已知)∴∠PCA=∠PCB(垂直的定义)在ΔPCA和ΔPCB中∴ΔPCA≌ΔPCB(SAS)即:PA=PB(全等三角形的对应边相等)。反过来,如果PA=PB,P1A=P1B,点P,P1在什么线上?过P,P1做直线EF交AB于C,可证明ΔPAP1≌PBP1(SSS)∴EF是等腰三角型ΔPAB的顶角平分线∴EF是AB的垂直平分线(等腰三角形三线合一性质)∴P,P1在AB的垂直平分线上,于是得出上述定理的逆定理(启发学生叙述)(用幻灯展示)。逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。根据上述定理和逆定理可以知道:直线MN可以看作和两点A、B的距离相等的所有点的集合。好文档,供参考4/14线段的垂直平分线可以看作是和线段两个端点距离相等的所有点的集合。三、举例(用幻灯展示)例:已知,如图ΔABC中,边AB,BC的垂直平分线相交于点P,求证:PA=PB=PC。证明:∵点P在线段AB的垂直平分线上∴PA=PB同理PB=PC∴PA=PB=PC由例题PA=PC知点P在AC的垂直平分线上,所以三角形三边的垂直平分线交于一点P,这点到三个顶点的距离相等。四、小结正确的运用这两个定理的关键是区别它们的条件与结论,加强证明前的分析,找出证明的途径。定理的作用是可证明两条线段相等或点在线段的垂直平分线上。《教案设计说明》线段的垂直平分线的性质定理及逆定理,都是几何中的重要定理,也是一条重要轨迹。在几何证明、计算、作图中都有重要应用。我讲授这节课是线段垂直平分线的第一节课,主要完成定理的引出、证明和初步的运用。好文档,供参考5/14在设计教案时,我结合教材内容,对如何导入新课,引出定理以及证明进行了探索。在导入新课这一环节上我先让学生做一条线段AB的垂直平分线EF,在EF上取一点P,让学生量出PA、PB的长度,引导学生观察、讨论每个人量得的这两个长度之间有什么关系:得到什么结论?学生回答:PA=PB。然后再让学生取一点试一试,这两个长度也相等,由此引导学生猜想到线段垂直平分线的性质定理。在这一过程中让学生主动积极的参与到教学中来,使学生通过作图、观察、量一量再得出结论。从而把知识的形成过程转化为学生亲自参与、发现、探索的过程。在教学时,引导学生分析性质定理的题设与结论,画图写出已知、求证,通过分析由学生得出证明性质定理的方法,这个过程既是探索过程也是调动学生动脑思考的过程,只有学生动脑思考了,才能真正理解线段垂直平分线的性质定理,以及证明方法。在此基础上再提出如果有两点到线段的两端点的距离相等,这样的点应在什么样的直线上?由条件得出这样的点在线段的垂直平分线上,从而引出性质定理的逆定理,由上述两个定理使学生再进一步知道线段的垂直平分线可以看作是到线段两端点距离的所有点的集合。这样可以帮助学生认识理论来源于实践又服务于实践的道理,也能提高他们学习的积极性,加深对所学知识的理解。在好文档,供参考6/14讲解例题时引导学生用所学的线段垂直平分线的性质定理以及逆定理来证,避免用三角形全等来证。最后总结点P是三角形三边垂直平分线的交点,这个点到三个顶点的距离相等。为了使学生当堂掌握两个定理的灵活运用,让学生做87页的两个练习,以达到巩固知识的目的。高二数学教案【第二篇】简单的逻辑联结词(一)教学目标1、知识与技能目标:(1)掌握逻辑联结词且的含义(2)正确应用逻辑联结词且解决问题(3)掌握真值表并会应用真值表解决问题2、过程与方法目标:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养。3、情感态度价值观目标:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神。(二)教学重点与难点重点:通过数学实例,了解逻辑联结词且的含义,好文档,供参考7/14使学生能正确地表述相关数学内容。难点:1、正确理解命题Pq真假的规定和判定。2、简洁、准确地表述命题Pq.教具准备:与教材内容相关的资料。教学设想:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养。(三)教学过程学生探究过程:1、引入在当今社会中,人们从事任何工作、学习,都离不开逻辑。具有一定逻辑知识是构成一个公民的文化素质的重要方面。数学的特点是逻辑性强,特别是进入高中以后,所学的数学比初中更强调逻辑性。如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误。其实,同学们在初中已经开始接触一些简易逻辑的知识。在数学中,有时会使用一些联结词,如且或非。在生活用语中,我们也使用这些联结词,但表达的含义和用法与数学中的含义和用法不尽相同。下面介绍数学中使用联结词且或非联结命题时的含义和用法。为叙述简便,今后常用小写字母p,q,r,s,表好文档,供参考8/14示命题。(注意与上节学习命题的条件p与结论q的区别)2、思考、分析问题1:下列各组命题中,三个命题间有什么关系?①12能被3整除;②12能被4整除;③12能被3整除且能被4整除。学生很容易看到,在第(1)组命题中,命题③是由命题①②使用联结词且联结得到的新命题。问题2:以前我们有没有学习过象这样用联结词且联结的命题呢?你能否举一些例子?例如:命题p:菱形的对角线相等且菱形的对角线互相平分。3、归纳定义一般地,用联结词且把命题p和命题q联结起来,就得到一个新命题,记作pq,读作p且q。命题pq即命题p且q中的且字与下面命题中的且字的含义相同吗?若xA且xB,则xB。定义中的且字与命题中的且字的含义是类似。但这里的逻辑联结词且与日常语言中的和,并且,以及,既又等相当,表明前后两者同时兼有,同时满足。说明:好文档,供参考9/14符号与开口都是向下。注意:p且q命题中的p、q是两个命题,而原命题,逆命题,否命题,逆否命题中的p,q是一个命题的条件和结论两个部分。4、命题pq的真假的规定你能确定命题pq的真假吗?命题pq和命题p,q的真假之间有什么联系?引导学生分析前面所举例子中命题p,q以及命题pq的真假性,概括出这三个命题的真假之间的关系的一般规律。例如:在上面的例子中,第(1)组命题中,①②都是真命题,所以命题③是真命题。一般地,我们规定:当p,q都是真命题时,pq是真命题;当p,q两个命题中有一个命题是假命题时,pq是假命题。5、例题例1:将下列命题用且联结成新命题pq的形式,并判断它们的真假。(1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等。(2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分;好文档,供参考10/14(3)p:35是15的倍数,q:35是7的倍数。解:(1)pq:平行四边形的对角线互相平分且平行四边形的对角线相等。也可简写成平行四边形的对角线互相平分且相等。由于p是真命题,且q也是真命题,所以pq是真命题。(2)pq:菱形的对角线互相垂直且菱形的对角线互相平分。也可简写成菱形的对角线互相垂直且平分。由于p是真命题,且q也是真命题,所以pq是真命题。(3)pq:35是15的倍数且35是7的倍数。也可简写成35是15的倍数且是7的倍数。由于p是假命题,q是真命题,所以pq是假命题。说明,在用且联结新命题时,如果简写,应注意保持命题的意思不变。例2:用逻辑联结词且改写下列命题,并判断它们的真假。(1)1既是奇数,又是素数;(2)2是素数且3是素数;6.巩固练习:P20练习第1,2题7.教学反思:(1)掌握逻辑联结词且的含义好文档,供参考11/14(2)正确应用逻辑联结词且解决问题高二数学优秀教案【第三篇】教学目标1、知识与技能(1)理解并掌握正弦函数的定义域、值域、周期性、(小)值、单调性、奇偶性;(2)能熟练运用正弦函数的性质解题。2、过程与方法通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。3、情感态度与价值观通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。教学重难点重点:正弦函数的性质。难点:正弦函数的性质应用。教学工具投影仪好文档,供参考12/14教学过程创设情境,揭示课题同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在R上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?探究新知让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:(1)正弦函数的定义域是什么?(2)正弦函数的值域是什么?(3)它的最值情况如何?(4)它的正负值区间如何分?(5)?(x)=0的解集是多少?师生一起归纳得出:1、定义域:y=sinx的定义域为R2、值域:引导回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性)再看正弦函数线(图象)验证上述结论,所以y=sinx的值域为[-1,1]好文档,供参考13/14高二数学优秀教案5【第四篇】高中数学命题教案命题及其关系命题及其关系一、课前小练:阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;(2)3;(3)3吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子。二、新课内容:1、命题的概念:①命题:可以判断真假的陈述句叫做命题(proposition)。上述6个语句中,哪些是命题。②真命题:判断为真的语句叫做真命题(trueproposition);假命题:判断为假的语句叫做假命题(falseproposition)。上述5个命题中,哪些为真命题?哪些为假命题?好文档,供参考14/14③例1:判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数是素数,则是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5);(6)平面内不相交的两条直线一定平行;(7)明天下雨。(学生自练个别回答教师点评)④探究:学生自我举出一些命题,并判断它们的真假。2、将一个命题改写成“若,则”的形式:三、练习:教材P41、2、3四、作业:1、教材P8第1题2、作业本1-10五、课后反思
本文标题:高二数学教案最新4篇
链接地址:https://www.777doc.com/doc-10419158 .html