您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 组织学习教育 > 人工智能心得体会范文4篇
1/18人工智能心得体会范文4篇【参考指引】此例优秀文档“人工智能心得体会范文4篇”由三一刀客网友为您整理编辑,以供阅读参考,希望对您有所帮助,喜欢就下载分享吧!人工智能心得体会【第一篇】2016年10月,全球最大代工厂富士康“机器换人”计划加速,每年有上万机器人投入使用,其江苏昆山市的工厂已裁减6万员工。正在举行的全国两会上,一些代表委员对有着近3亿人的农民工群体未来的走向,不无担忧。他们提醒说,“机器换人”,可能会导致农民工未来的就业压力不断加大。(2017/3/10《工人日报》)人类进入信息化时代,随之而来的将是智能化时代,或者称着机器人时代。目前“机器换人”计划加速,大量的机器人投入使用,让人们从脏、热、累、有毒有害、机械重复的工作中解放出来,将使生产效率和产品质量大大提高,同时能大幅降低生产成本,带来社会的进步。中国制造正在向中高端迈进,只有接纳机器人,才能提高企业和产品的国际竞争力。机器人时代不论你喜欢不喜欢都将如期而至。“机器换人”来了,预示着一场工业革命已经来临,生产方式、企业管理和用工制度等都将发生一系列的变化,一些企业因为引入机器人而不得不大量裁员,一部分工人特别是农民2/18工因此失去工作的机会,一些年龄大的农民工要想再就业就比较困难,一旦失去工作机会也将丢掉手中的饭碗。“机器换人”来了,喜忧参半。要有忧患意识,要有危机感,紧迫感,早做安排,提前做好准备。在今年的两会上,全国人大财政经济委员会副主任委员辜胜阻给出细致的建议,要在普惠性前提下,为农民工提供一个有弹性、多层次、多选择、多模式的持续进修机制。即政府和企业要为农民工提供进修培训的机会,掌握一定的职业技能,以应对新的就业市场。全国人大代表曹晶认为,应当从职业学校到企业打造出一条终身学习提升的通道,或出台技能津贴指导意见,督促人社部门和企业共同落实。同时,通过立法确定企业必须承担职业教育的义务。教育和培训不可能是一步到位,“授人以鱼不如授人以渔。”以终身学习适应万变的社会和就业市场。机器人来了,政府和企业要加大职工培训的力度,职工自身也必须自我加压,积极参与学习和培训,学到一技之长,学到再就业的本领,不会因为企业裁员而失去工作的机会。机器人来了,用工总量或会减少,政府和企业还应拓宽就业渠道,增加就业岗位保就业,同时完善失业保险制度。个人也应积极主动创造劳动机会。就业是最大的民生,失去就业机会也将无法保证生活质量。机器人来了,不可以坐等,要积极应对。人工智能心得体会【第二篇】电影《人工智能》,一个未来版的皮诺曹式故事。David—3/18一个有思想、有感情的小机器人,他被一对人类父母—Henry和Monica所收养。突然有一天,Henry和Monica的亲生儿子Martin从昏迷中醒来。而Monica对于亲生儿子和机器人养子中作出了选取。David被人类父母抛弃后,一向认为是自己被抛弃的原因是自己不是一个有血肉的人,他渴望着自己能由一个机器人变成一个真真正正的人。抱着对这个愿望的执着,David展开了漫长的历程。在描述David经历的故事中,我们能够看到几个不一样的机器人主角。每种机器人都代表自己的作用,但却无法被人类接纳到生命当中存在。与David一同被困机器屠宰场的破旧机器人,当中有仆人、工人、看门人的打扮,能够看出以前作用于生活和生产。那些破旧机器人中都以前出色过,但当有更新更先进的型号推出时,它们即被毫无疑问地丢弃,最终被人类彻底销毁。Joe,机器情人,为人类的生理需求服务,懂得分析人类心理变化。Teddy,玩具熊机器人,只会作为宠物主角的逻辑思考。Joe和Teddy能够被人类作为一种寄托,Joe甚至能读懂人类的情绪,但始终不被人类所在乎,最终也只能说出“我以前存在”。David,新研发的高仿真机器人,能脱离数据计算而用感情思考,懂得爱别人,被人类收养。在Martin苏醒前,Henry和Monica一向尝试去接纳这个机器人儿子,直至Martin康复4/18回来发生了一些事情。Monica却放下了接纳机器人做儿子,正因机器人的外表甚至内在无论多么像人类,本质却是机器人。David的创造者对于创造David的想法是,尝试去做一个会去爱的机器人,而成功之后就是与David同类机器人量产化的开始。由电影的开端时,我们已经看出故事里的社会背景不存在属于机器人存在的空间。每种机器人的出现也是为了人类的需要,只能作为工具的本质。即使造出所谓的“爱”,也无法和人类的爱产生共鸣。更具讽刺的是,David最终只能让电影里代表高级生命体的外星人帮忙他达成被爱的愿望。而这个时候,地球上的人类已经灭绝了。透过电影这样比较隐晦的描述,我们感受到的是,人类到了灭绝仍无法接纳机器人到自己的爱当中。或者我们不必深化到去思考人与机器人的关联,拉近到我们的周围,在现实生活的社会中,不正是有人像电影里的人类对待机器人一般去对待他人吗?人工智能心得体会【第三篇】一、研究领域在大多数数学科中存在着几个不同的研究领域,每个领域都有着特有的感兴趣的研究课题、研究技术和术语。在人工智能中,这样的领域包括自然语言处理、自动定理证明、自动程序设计、智能检索、智能调度、机器学习、专家系统、机器人学、智能控制、模式识别、视觉系统、神经网络、agent、计5/18算智能、问题求解、人工生命、人工智能方法、程序设计语言等。在过去50多年里,已经建立了一些具有人工智能的计算机系统;例如,能够求解微分方程的,下棋的,设计分析集成电路的,合成人类自然语言的,检索情报的,诊断疾病以及控制控制太空飞行器、地面移动机器人和水下机器人的具有不同程度人工智能的计算机系统。人工智能是一种外向型的学科,它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。因为人工智能的研究领域十分广阔,它总的来说是面向应用的,也就说什么地方有人在工作,它就可以用在什么地方,因为人工智能的最根本目的还是要模拟人类的思维。参照人在各种活动中的功能,我们可以得到人工智能的领域也不过就是代替人的活动而已。哪个领域有人进行的智力活动,哪个领域就是人工智能研究的领域。人工智能就是为了应用机器的长处来帮助人类进行智力活动。人工智能研究的目的就是要模拟人类神经系统的功能。二、各领域国内外研究现状(进展成果)近年来,人工智能的研究和应用出现了许多新的领域,它们是传统人工智能的延伸和扩展。在新世纪开始的时候,这些新研究已引起人们的更密切关注。这些新领域有分布式人工智能与艾真体(agent)、计算智能与进化计算、数据挖掘与知识发现,以及人工生命等。下面逐一加以概略介绍。6/181、分布式人工智能与艾真体分布式人工智能(distributedai,dai)是分布式计算与人工智能结合的结果。dai系统以鲁棒性作为控制系统质量的标准,并具有互操作性,即不同的异构系统在快速变化的环境中具有交换信息和协同工作的能力。分布式人工智能的研究目标是要创建一种能够描述自然系统和社会系统的精确概念模型。dai中的智能并非独立存在的概念,只能在团体协作中实现,因而其主要研究问题是各艾真体间的合作与对话,包括分布式问题求解和多艾真体系统(multiagentsystem,mas)两领域。其中,分布式问题求解把一个具体的求解问题划分为多个相互合作和知识共享的模块或结点。多艾真体系统则研究各艾真体间智能行为的协调,包括规划、知识、技术和动作的协调。这两个研究领域都要研究知识、资源和控制的划分问题,但分布式问题求解往往含有一个全局的概念模型、问题和成功标准,而mas则含有多个局部的概念模型、问题和成功标准。mas更能体现人类的社会智能,具有更大的灵活性和适应性,更适合开放和动态的世界环境,因而倍受重视,已成为人工智能以至计算机科学和控制科学与工程的研究热点。当前,艾真体和mas的研究包括理论、体系结构、语言、合作与协调、通讯和交互技术、mas学习和应用等。mas已在自动驾驶、机器人导航、机场管理、电力管理和信息检索等方面获得应用。7/182、计算智能与进化计算计算智能(putingintelligence)涉及神经计算、模糊计算、进化计算等研究领域。其中,神经计算和模糊计算已有较长的研究历史,而进化计算则是较新的研究领域。在此仅对进化计算加以说明。进化计算(evolutionaryputation)是指一类以达尔文进化论为依据来设计、控制和优化人工系统的技术和方法的总称,它包括遗传算法(geneticalgorithms)、进化策略(evolutionarystrategies)和进化规划(evolutionaryprogramming)。它们遵循相同的指导思想,但彼此存在一定差别。同时,进化计算的研究关注学科的交叉和广泛的应用背景,因而引入了许多新的方法和特征,彼此间难于分类,这些都统称为进化计算方法。目前,进化计算被广泛运用于许多复杂系统的自适应控制和复杂优化问题等研究领域,如并行计算、机器学习、电路设计、神经网络、基于艾真体的仿真、元胞自动机等。达尔文进化论是一种鲁棒的搜索和优化机制,对计算机科学,特别是对人工智能的发展产生了很大的影响。大多数生物体通过自然选择和有性生殖进行进化。自然选择决定了群体中哪些个体能够生存和繁殖,有性生殖保证了后代基因中的混合和重组。自然选择的原则是适者生存,即物竞天择,优胜劣汰。直到几年前,遗传算法、进化规划、进化策略三个领域的研究才开始交流,并发现它们的共同理论基础是生物进化论。8/18因此,把这三种方法统称为进化计算,而把相应的算法称为进化算法。3、数据挖掘与知识发现知识获取是知识信息处理的关键问题之一。20世纪80年代人们在知识发现方面取得了一定的进展。利用样本,通过归纳学习,或者与神经计算结合起来进行知识获取已有一些试验系统。数据挖掘和知识发现是90年代初期新崛起的一个活跃的研究领域。在数据库基础上实现的知识发现系统,通过综合运用统计学、粗糙集、模糊数学、机器学习和专家系统等多种学习手段和方法,从大量的数据中提炼出抽象的知识,从而揭示出蕴涵在这些数据背后的客观世界的内在联系和本质规律,实现知识的自动获取。这是一个富有挑战性、并具有广阔应用前景的研究课题。从数据库获取知识,即从数据中挖掘并发现知识,首先要解决被发现知识的表达问题。最好的表达方式是自然语言,因为它是人类的思维和交流语言。知识表示的最根本问题就是如何形成用自然语言表达的概念。机器知识发现始于1974年,并在此后十年中获得一些进展。这些进展往往与专家系统的知识获取研究有关。到20世纪80年代末,数据挖掘取得突破。越来越多的研究者加入到知识发现和数据挖掘的研究行列。现在,知识发现和数据挖掘已成为人工智能研究的又一热点。比较成功的知识发现系统有用于超级市场商品数据分析、9/18解释和报告的coverstory系统,用于概念性数据分析和查寻感兴趣关系的集成化系统explora,交互式大型数据库分析工具kdw,用于自动分析大规模天空观测数据的skicat系统,以及通用的数据库知识发现系统kdd等。4、人工生命人工生命(artificiallife,alife)的概念是由美国圣菲研究所非线性研究组的兰顿(langton)于1987年提出的,旨在用计算机和精密机械等人工媒介生成或构造出能够表现自然生命系统行为特征的仿真系统或模型系统。自然生命系统行为具有自组织、自复制、自修复等特征以及形成这些特征的混沌动力学、进化和环境适应。人工生命所研究的人造系统能够演示具有自然生命系统特征的行为,在“生命之所能”(lifeasitcouldbe)的广阔范围内深入研究“生命之所知”(lifeasweknowit)的实质。只有从“生命之所能”的广泛内容来考察生命,才能真正理解生物的本质。人工生命与生命的形式化基础有关。生物学从问题的顶层开始,把器官、组织、细胞、细胞膜,直到分子,以探索生命的奥秘和机理。人工生命则从问题的底层开始,把器官作为简单机构的宏观群体来考察,自底向上进行综合,把简单的由规则支配的对象构成更大
本文标题:人工智能心得体会范文4篇
链接地址:https://www.777doc.com/doc-10998319 .html