您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2018年中考数学真题分类汇编第一期专题17点线面角试题含解析20190125387
1点线面角一、选择题1.(2018•山东淄博•4分)甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜的场数相同,则丁胜的场数是()A.3B.2C.1D.0【考点】O2:推理与论证.【分析】四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场;由此进行分析即可.【解答】解:四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场;若甲只胜一场,这时乙、丙各胜一场,说明丁胜三场,这与甲胜丁矛盾,所以甲只能是胜两场,即:甲、乙、丙各胜2场,此时丁三场全败,也就是胜0场.答:甲、乙、丙各胜2场,此时丁三场全败,丁胜0场.故选:D.【点评】此题是推理论证题目,解答此题的关键是先根据题意,通过分析,进而得出两种可能性,继而分析即可.2.(2018•甘肃白银,定西,武威•3分)若一个角为,则它的补角的度数为()A.B.C.D.【答案】C【解析】【分析】两个角的和等于则这两个角互为补角.【解答】一个角为,则它的补角的度数为:故选C.【点评】考查补角的定义,熟练掌握补角的定义是解题的关键.3.(2018年江苏省南京市•2分)用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是()2A.①②B.①④C.①②④D.①②③④【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此截面的形状可能是:三角形、四边形、五边形、六边形.【解答】解:用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,而三角形只能是锐角三角形,不能是直角三角形和钝角三角形.故选:B.【点评】本题考查了正方体的截面,注意:正方体的截面的四种情况应熟记.二.解答题(要求同上一)1.(2018•四川凉州•7分)观察下列多面体,并把如表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a61012棱数b912面数c58观察表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.【分析】结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有(n+2)个面,2n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系.【解答】解:填表如下:名称三棱柱四棱柱五棱柱六棱柱图形顶点数a681012棱数b91215183面数c5678根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有n+2个面,共有2n个顶点,共有3n条棱;故a,b,c之间的关系:a+c﹣b=2.【点评】此题主要考查了欧拉公式,熟记常见棱柱的特征,可以总结一般规律:n棱柱有(n+2)个面,2n个顶点和3n条棱是解题关键.
本文标题:2018年中考数学真题分类汇编第一期专题17点线面角试题含解析20190125387
链接地址:https://www.777doc.com/doc-11130852 .html