您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 四川省乐山市2018年中考数学真题试题(含解析)
1四川省乐山市2018年中考数学真题试题一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项符合题目要求1.﹣2的相反数是()A.﹣2B.2C.D.﹣解:﹣2的相反数是2.故选B.2.如图是由长方体和圆柱组成的几何体,它的俯视图是()A.B.C.D.解:从上边看外面是正方形,里面是没有圆心的圆.故选A.3.方程组==x+y﹣4的解是()A.B.C.D.解:由题可得:,消去x,可得2(4﹣y)=3y,解得y=2,把y=2代入2x=3y,可得x=3,∴方程组的解为.故选D.4.如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是()A.EG=4GCB.EG=3GCC.EG=GCD.EG=2GC2解:∵DE∥FG∥BC,DB=4FB,∴.故选B.5.下列调查中,适宜采用普查方式的是()A.调查全国中学生心理健康现状B.调查一片试验田里五种大麦的穗长情况C.要查冷饮市场上冰淇淋的质量情况D.调查你所在班级的每一个同学所穿鞋子的尺码情况解:A.了解全国中学生心理健康现状调查范围广,适合抽样调查,故A错误;B.了解一片试验田里五种大麦的穗长情况调查范围广,适合抽样调查,故B错误;C.了解冷饮市场上冰淇淋的质量情况调查范围广,适合抽样调查,故C错误;D.调查你所在班级的每一个同学所穿鞋子的尺码情况,适合全面调查,故D正确;故选D.6.估计+1的值,应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间解:∵≈2.236,∴+1≈3.236.故选C.7.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸.故选C.8.已知实数a、b满足a+b=2,ab=,则a﹣b=()3A.1B.﹣C.±1D.±解:∵a+b=2,ab=,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=,∴(a﹣b)2=a2﹣2ab+b2=1,∴a﹣b=±1.故选C.9.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.B.6C.3D.12解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为y=﹣过点P作PB⊥y轴于点B∵PA=PB∴B为OA中点,∴S△PAB=S△POB由反比例函数比例系数k的性质,S△POB=3∴△POA的面积是6故选B.10.二次函数y=x2+(a﹣2)x+3的图象与一次函数y=x(1≤x≤2)的图象有且仅有一个交点,则实数a的取值范围是()A.a=3±2B.﹣1≤a<2C.a=3或﹣≤a<2D.a=3﹣2或﹣1≤a<﹣解:由题意可知:方程x2+(a﹣2)x+3=x在1≤x≤2上只有一个解,即x2+(a﹣3)x+3=0在1≤x≤2上只有一个解,当△=0时,即(a﹣3)2﹣12=04a=3±2当a=3+2时,此时x=﹣,不满足题意,当a=3﹣2时,此时x=,满足题意,当△>0时,令y=x2+(a﹣3)x+3,令x=1,y=a+1,令x=2,y=2a+1(a+1)(2a+1)≤0解得:﹣1≤a≤,当a=﹣1时,此时x=1或3,满足题意;当a=﹣时,此时x=2或x=,不满足题意.综上所述:a=3﹣2或﹣1≤a<.故选D.二、填空题:本大题共6小题,每小题3分,共18分11.计算:|﹣3|=.解:|﹣3|=3.故答案为:3.12.化简+的结果是解:+=﹣==﹣1.故答案为:﹣1.13.如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为.解:设点C所表示的数为x.∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.14.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,连结CE,则∠BCE的度数是度.5解:∵四边形ABCD是正方形,∴∠CAB=∠BCA=45°;△ACE中,AC=AE,则:∠ACE=∠AEC=(180°﹣∠CAE)=67.5°;∴∠BCE=∠ACE﹣∠ACB=22.5°.故答案为:22.5.15.如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为.解:过O′作O′M⊥OA于M,则∠O′MA=90°,∵点O′的坐标是(1,),∴O′M=,OM=1.∵AO=2,∴AM=2﹣1=1,∴tan∠O′AM==,∴∠O′AM=60°,即旋转角为60°,∴∠CAC′=∠OAO′=60°.∵把△OAC绕点A按顺时针方向旋转到△O′AC′,∴S△OAC=S△O′AC′,∴阴影部分的面积S=S扇形OAO′+S△O′AC′﹣S△OAC﹣S扇形CAC′=S扇形OAO′﹣S扇形CAC′=﹣=.故答案为:.16.已知直线l1:y=(k﹣1)x+k+1和直线l2:y=kx+k+2,其中k为不小于2的自然数.(1)当k=2时,直线l1、l2与x轴围成的三角形的面积S2=;(2)当k=2、3、4,……,2018时,设直线l1、l2与x轴围成的三角形的面积分别为S2,S3,S4,……,6S2018,则S2+S3+S4+……+S2018=.解:当y=0时,有(k﹣1)x+k+1=0,解得:x=﹣1﹣,∴直线l1与x轴的交点坐标为(﹣1﹣,0),同理,可得出:直线l2与x轴的交点坐标为(﹣1﹣,0),∴两直线与x轴交点间的距离d=﹣1﹣﹣(﹣1﹣)=﹣.联立直线l1、l2成方程组,得:,解得:,∴直线l1、l2的交点坐标为(﹣1,﹣2).(1)当k=2时,d=﹣=1,∴S2=×|﹣2|d=1.故答案为:1.(2)当k=3时,S3=﹣;当k=4时,S4=﹣;…;S2018=﹣,∴S2+S3+S4+……+S2018=﹣+﹣+﹣+…+﹣=﹣=2﹣=.故答案为:.三、简答题:本大题共3小题,每小题9分,共27分17.计算:4cos45°+(π﹣2018)0﹣解:原式=4×+1﹣2=1.18.解不等式组:解:.∵解不等式①得:x>0,解不等式②得:x<6,∴不等式组的解集为0<x<6.19.如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.证明:∵∠ABD+∠3=180°∠ABC+∠4=180°,且∠3=∠4,∴∠ABD=∠ABC在△ADB和△ACB中,,∴△ADB≌△ACB(ASA),∴BD=CD.四、本大题共3小题,每小题10分,共30分20.先化简,再求值:(2m+1)(2m﹣1)﹣(m﹣1)2+(2m)3÷(﹣8m),其中m是方程x2+x﹣2=0的根7解:原式=4m2﹣1﹣(m2﹣2m+1)+8m3÷(﹣8m)=4m2﹣1﹣m2+2m﹣1﹣m2=2m2+2m﹣2=2(m2+m﹣1).∵m是方程x2+x﹣2=0的根,∴m2+m﹣2=0,即m2+m=2,则原式=2×(2﹣1)=2.21.某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查,过程如下,请补充完整.(1)收集数据从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下:甲班65757580605075908565乙班90558070557095806570(2)整理描述数据按如下分数段整理、描述这两组样本数据:成绩x人数班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x<100甲班13321乙班21m2n在表中:m=,n=.(3)分析数据①两组样本数据的平均数、中位数、众数如表所示:班级平均数中位数众数甲班72x75乙班7270y在表中:x=,y=.②若规定测试成绩在80分(含80分)以上的叙述身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有人.③现从甲班指定的2名学生(1男1女),乙班指定的3名学生(2男1女)中分别抽取1名学生去参加上级部门组织的身体素质测试,用树状图和列表法求抽到的2名同学是1男1女的概率.8解:(2)由收集的数据得知m=3、n=2.故答案为:3、2;(3)①甲班成绩为:50、60、65、65、75、75、75、80、85、90,∴甲班成绩的中位数x==75,乙班成绩70分出现次数最多,所以的众数y=70.故答案为:75、70;②估计乙班50名学生中身体素质为优秀的学生有50×=20人;③列表如下:男女男男、男女、男男男、男女、男女男、女女、女由表可知,共有6种等可能结果,其中抽到的2名同学是1男1女的有3种结果,所以抽到的2名同学是1男1女的概率为=.22.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?解:(1)设线段AB解析式为y=k1x+b(k≠0)∵线段AB过点(0,10),(2,14)代入得9解得∴AB解析式为:y=2x+10(0≤x<5)∵B在线段AB上当x=5时,y=20∴B坐标为(5,20)∴线段BC的解析式为:y=20(5≤x<10)设双曲线CD解析式为:y=(k2≠0)∵C(10,20)∴k2=200∴双曲线CD解析式为:y=(10≤x≤24)∴y关于x的函数解析式为:y=(2)由(1)恒温系统设定恒温为20°C(3)把y=10代入y=中,解得:x=20∴20﹣10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.五、本大题共2小题,每小题10分,共20分23.已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.(1)证明:由题意可得:△=(1﹣5m)2﹣4m×(﹣5)=1+25m2﹣20m+20m=25m2+1>0,故无论m为任何非零实数,此方程总有两个实数根;(2)解:mx2+(1﹣5m)x﹣5=0,解得:x1=﹣,x2=5,由|x1﹣x2|=6,得|﹣﹣5|=6,解得:m=1或m=10﹣;(3)解:由(2)得:当m>0时,m=1,此时抛物线为y=x2﹣4x﹣5,其对称轴为:x=2,由题已知,P,Q关于x=2对称,∴=2,即2a=4﹣n,∴4a2﹣n2+8n=(4﹣n)2﹣n2+8n=16.24.如图,P是⊙O外的一点,PA、PB是⊙O的两条切线,A、B是切点,PO交AB于点F,延长BO交⊙O于点C,交PA的延长交于点Q,连结AC.(1)求证:AC∥PO;(2)设D为PB的中点,QD交AB于点E,若⊙O的半径为3,CQ=2,求的值.(1)证明:∵PA、PB是⊙
本文标题:四川省乐山市2018年中考数学真题试题(含解析)
链接地址:https://www.777doc.com/doc-11195713 .html