您好,欢迎访问三七文档
【中小学教辅资源店微信:mlxt2022】专题19应用题(函数、不等式、方程)一.解答题1.(2022·广西梧州)梧州市地处亚热带,盛产龙眼.新鲜龙眼的保质期短,若加工成龙眼干(又叫带壳圆肉)则有利于较长时间保存.已知3kg的新鲜龙眼在无损耗的情况下可以加工成1kg的龙眼干.(1)若新鲜龙眼售价为12元/kg,在无损耗的情况下加工成龙眼干,使龙眼干的销售收益不低于新鲜龙眼的销售收益,则龙眼干的售价应不低于多少元/kg?(2)在实践中,小苏发现当地在加工龙眼干的过程中新鲜龙眼有6%的损耗,为确保果农的利益,龙眼干的销售收益应不低于新鲜龙眼的销售收益,此时龙眼干的定价取最低整数价格.市场调查还发现,新鲜龙眼以12元/kg最多能卖出100kg,超出部分平均售价是5元/kg,可售完.果农们都以这种方式出售新鲜龙眼.设某果农有akg新鲜龙眼,他全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差为w元,请写出w与a的函数关系式.【答案】(1)龙眼干的售价应不低于36元/kg(2)11,(100)50361700,(100)50aawaa【分析】(1)设龙眼干的售价应不低于x元/kg,新鲜龙眼共3a千克,得到总收益为12×3a=36a元;加工成龙眼干后总收益为ax元,再根据龙眼干的销售收益不低于新鲜龙眼的销售收益得到不等式ax≥36a,解出即可;(2)设龙眼干的售价为y元/千克,当100a千克时求出新鲜龙眼的销售收益为12a元,龙眼干的销售收益为47150ay元,根据“龙眼干的销售收益不低于新鲜龙眼的销售收益,且龙眼干的定价取最低整数价格”得到4712150aya³,解出39y;然后再当100a千克时同样求出新鲜龙眼收益与龙眼干收益,再相减即可求解.(1)解:设龙眼干的售价应不低于x元/kg,设新鲜龙眼共3a千克,总销售收益为12×3a=36a(元),加工成龙眼干后共a千克,总销售收益为x×a=ax(元),∵龙眼干的销售收益不低于新鲜龙眼的销售收益,∴ax≥36a,解出:x≥36,故龙眼干的售价应不低于36元/kg.(2)解:a千克的新鲜龙眼一共可以加工成147(16%)3150aa?=千克龙眼干,设龙眼干的售价为y元/千克,则龙眼干的总销售收益为47150ay元,当100a千克时,新鲜龙眼的总收益为12a元,∵龙眼干的销售收益不低于新鲜龙眼的销售收益,【中小学教辅资源店微信:mlxt2022】∴4712150aya³,解出12150180038.34747y´??元,又龙眼干的定价取最低整数价格,∴39y,∴龙眼干的销售总收益为476113915050aa?,此时全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差61111125050awaa=-=元;当100a千克时,新鲜龙眼的总收益为121005(100)(5700)aa?-=+元,龙眼干的总销售收益为61150a元,此时全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差611361(5700)(700)5050awaa=-+=-元,故w与a的函数关系式为11,10050361700,(100)50aawaa.【点睛】本题考查了一元一次不等式的应用、一次函数的实际应用等,本题的关键是读懂题意,明确题中的数量关系,正确列出函数关系式或不等式求解.2.(2022·黑龙江)学校开展大课间活动,某班需要购买A、B两种跳绳.已知购进10根A种跳绳和5根B种跳绳共需175元:购进15根A种跳绳和10根B种跳绳共需300元.(1)求购进一根A种跳绳和一根B种跳绳各需多少元?(2)设购买A种跳绳m根,若班级计划购买A、B两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?【答案】(1)购进一根A种跳绳需10元,购进一根B种跳绳需15元(2)有三种方案:方案一:购买A种跳绳23根,B种跳绳22根;方案二:购买A种跳绳24根,B种跳绳21根;方案三:购买A种跳绳25根,B种跳绳20根(3)方案三需要费用最少,最少费用是550元【分析】(1)设购进一根A种跳绳需x元,购进一根B种跳绳需y元,可列方程组1051751510300xyxy,解方程组即可求得结果;(2)根据题意可列出不等式组101545560101545548mmmm,解得:2325.4m,由此即可确定方案;(3)设购买跳绳所需费用为w元,根据题意,得1015455675wmmm,结合函数图像的性质,【中小学教辅资源店微信:mlxt2022】可知w随m的增大而减小,即当25m时525675550.(1)解:设购进一根A种跳绳需x元,购进一根B种跳绳需y元,根据题意,得1051751510300xyxy,解得1015xy,答:购进一根A种跳绳需10元,购进一根B种跳绳需15元;(2)根据题意,得101545560101545548mmmm,解得2325.4m,∵m为整数,∴m可取23,24,25.∴有三种方案:方案一:购买A种跳绳23根,B种跳绳22根;方案二:购买A种跳绳24根,B种跳绳21根;方案三:购买A种跳绳25根,B种跳绳20根;(3)设购买跳绳所需费用为w元,根据题意,得1015455675wmmm∵50,∴w随m的增大而减小,∴当25m时,w有最小值,即w525675550(元)答:方案三需要费用最少,最少费用是550元.【点睛】本题主要考查的是不等式应用题、二元一次方程组应用题、一次函数相关应用题,根据题意列出对应的方程是解题的关键.3.(2022·黑龙江牡丹江)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲乙进价(元/双)mm﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专【中小学教辅资源店微信:mlxt2022】卖店要获得最大利润应如何进货?【答案】(1)m=10;(2)11种;(3)购进甲种运动鞋95双,购进乙种运动鞋105双,可获得最大利润【分析】(1)用总价除以单价表示出购进鞋的数量,根据两种鞋的数量相等列出方程求解即可.(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200﹣x)双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答.(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.【详解】解:(1)依题意得,30002400mm20,去分母得,3000(m﹣20)=2400m,解得m=100.经检验,m=100是原分式方程的解.∴m=100.(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,240100x16080(200x)21700{240100x16080(200x)22300①②,解不等式①得,x≥95,解不等式②得,x≤105,∴不等式组的解集是95≤x≤105.∵x是正整数,105﹣95+1=11,∴共有11种方案.(3)设总利润为W,则W=(140﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤105),①当50<a<60时,60﹣a>0,W随x的增大而增大,∴当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双.②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样.③当60<a<70时,60﹣a<0,W随x的增大而减小,∴当x=95时,W有最大值,即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.4.(2022·福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.【答案】(1)购买绿萝38盆,吊兰8盆(2)369元【中小学教辅资源店微信:mlxt2022】【分析】(1)设购买绿萝x盆,购买吊兰y盆,根据题意建立方程组4696390xyxy,解方程组即可得到答案;(2)设购买绿萝x盆,购买吊兰y盆,总费用为z,得到关于z的一次函数3414zy,再建立关于y的不等式组,解出y的取值范围,从而求得z的最小值.(1)设购买绿萝x盆,购买吊兰y盆∵计划购买绿萝和吊兰两种绿植共46盆∴46xy∵采购组计划将预算经费390元全部用于购买绿萝和吊兰,绿萝每盆9元,吊兰每盆6元∴96390xy得方程组4696390xyxy解方程组得388xy∵382×8,符合题意∴购买绿萝38盆,吊兰8盆;(2)设购买绿萝x盆,购买吊兰吊y盆,总费用为z∴46xy,96zxy∴4143zy∵总费用要低于过390元,绿萝盆数不少于吊兰盆数的2倍∴41433902yxy将46xy代入不等式组得4143390462yyy∴4683y∴y的最大值为15∵3414zy为一次函数,随y值增大而减小∴15y时,z最小∴4631xy∴96369zxy元故购买两种绿植最少花费为369元.【点睛】本题考查二元一次方程组、一次函数、不等式组的性质,解题的关键是数量掌握二元一次方程组、一次函数、不等式组的相关知识.5.(2022·湖北恩施)某校计划租用甲、乙两种客车送180名师生去研学基地开展综合实践活动.已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元.甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生.(1)租用甲、乙两种客车每辆各多少元?(2)若学校计划租用8辆客车,怎样租车可使总费用最少?【答案】(1)甲种客车每辆200元,乙种客车每辆300元(2)租用甲种客车5辆,乙种客车3辆,租车费用最低为1900元【中小学教辅资源店微信:mlxt2022】【分析】(1)可设甲种客车每辆x元,乙种客车每辆y元,根据等量关系:一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元,列出方程组求解即可;(2)设租车费用为w元,租用甲种客车a辆,根据题意列出不等式组,求出a的取值范围,进而列出w关于a的函数关系式,根据一次函数的性质求解即可.(1)解:设甲种客车每辆x元,乙种客车每辆y元,依题意知,500231300xyxy,解得200300xy,答:甲种客车每辆200元,乙种客车每辆300元;(2)解:设租车费用为w元,租用甲种客车a辆,则乙种客车8a辆,15258150aa,解得:5a,20030081002400waaa,1000,w随a的增大而减小,a取整数,a最大为5,5a时,费用最低为100524001900(元),853(辆).答:租用甲种客车5辆,乙种客车3辆,租车费用最低为1900元.【点睛】本题考查一次函数的应用,
本文标题:专题19 应用题(函数、不等式、方程)-2022年中考数学真题分项汇编(全国通用)(第2期)(解析版
链接地址:https://www.777doc.com/doc-11230398 .html