您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 理财规划师_基础知识授课PPT7(PPT47页)
《理财规划师—基础知识》1理财规划师—基础知识—第7章理财计算概率基础1统计基础2收益和风险3《理财规划师—基础知识》2本章提示重点P555利用等可能事件计算概率互补事件概率、概率的加法和乘法几种常见的统计表和统计图计算几种常见的统计量投资风险和收益计算难点互补事件概率、概率的加法和乘法货币时间价值风险和收益的计算《理财规划师—基础知识》3本章内容主要内容概率基础统计基础收益和风险统计表统计图常用统计量货币时间价值随机事件概率收益率计算分析度量《理财规划师—基础知识》4第1节概率基础随机事件概率《理财规划师—基础知识》5随机事件随机事件是指在同一组条件下,每次试验可能出现,也可能不出现的事件,也称偶然事件。必然事件是指在同一组条件下,每次试验一定出现的事件。不可能事件是指在同一组条件下,每次试验一定不出现的事件。概率论研究的是随机事件,并且把必然事件和不可能事件包括在随机事件内作为两个极端来看待。随机事件简称为事件,一般用大写字母A,B,C等表示;必然事件用Ω表示;不可能事件用Φ表示。如果一个事件不能分解成两个或更多个事件,则这个事件称为基本事件或简单事件。一个试验中所有简单事件的全体称为样本空间或基本空间,记为Ω。《理财规划师—基础知识》6事件的关系BABABABABABBABABAABBABBSBB,B《理财规划师—基础知识》7事件的概率事件A的概率是描述事件A在试验中出现的可能性大小的一种度量,记为P(A)。则称P(A)为事件A的概率。概率的古典定义:概率统计定义:主观概率的定义:是一个决策者根据个人对某事件是否发生,根据本人掌握的信息对该事件发生可能性的判断。nmAAP事件个数样本空间所包含的基本所包含的基本事件个数事件)(pnmAP)(《理财规划师—基础知识》8事件的概率条件概率当某一事件B已经发生时,求事件A发生的概率,称这种概率为事件B发生条件下事件A发生的条件概率(conditionalprobability),记为P(A│B)。0)|()(, )()(BPBPABPBAP)|(BAPBPABP)()()|(ABPAPABP)()(《理财规划师—基础知识》9事件的概率全概率公式设n个事件A1,A2,A3,…,An互不相容,P(Ai)>0(i=1,2,…,n),事件B满足:则上式即为全概率公式。nAAAB21)|()()(1iiniABPAPBP《理财规划师—基础知识》10第2节统计基础统计表和统计图二维统计表、三维统计表直方图、散点图、饼状图、盒形图(箱线图)常用统计量平均数–算术平均、几何平均、中位数、众数随机变量的数字特征–数序期望、方差、标准差、协方差、相关系数《理财规划师—基础知识》11统计表统计表是用于展示数据的一个基本工具。组成:表头(表号、总标题、表中数据单位等)、行标题、列标题、数字资料。表中的上下两条横线一般用粗线,中间的用细线。表中数据一般是右对齐,有小数点的应该以小数点对齐,且小数点的位数应统一。《理财规划师—基础知识》12统计图直方图是展示分组数据分布的一种图形,用矩形的宽度和高度(即面积)来表示频数分布。散点图描述时间序列数据。每组数据(xi,yi)在坐标系中用一个点表示。《理财规划师—基础知识》13统计图饼状图用圆形及圆内扇形的角度来表示数值大小的图形,表示一个样本(或总体)中各个组成部分的数据占全部数据的比例。盒形图(箱线图)是由一组数据的最大值、最小值、中位数、两个四分位数这五个特征值绘制而成的,用于反映原始数据分布的特征。《理财规划师—基础知识》14数据类型数据类型按计量尺度按收集方法按时间状况分类数据顺序数据数值型数据观测数据实验数据截面数据时序数据《理财规划师—基础知识》15数据类型与统计图示数据类型品质数据数值型数据汇总表条形图饼状图环形图原始数据分组数据时序数据多变量数据茎叶图箱线图直方图线图散点图气泡图雷达图《理财规划师—基础知识》16常用统计量平均数算数平均数(简单平均数)几何平均数–是n个变量值乘积的n次方根。–是适用于特殊数据的一种平均数,主要用于计算比率(平均增长率)的平均。《理财规划师—基础知识》17常用统计量中位数是将一组数据(随机变量)排序后,处于中间位置上的变量值(数值)。用Me表示。中位数主要用于测度顺序数据的集中趋势,也适合用于作为数值型数据的集中趋势,但不适用于分类数据。设一组数据为x1,x2,…,xn,按从小到大排序后为x(1),x(2),…,x(n),则中位数为:, n为偶数, n为奇数}{21)12()2()21(nnnxxx《理财规划师—基础知识》18常用统计量众数(模数)(mode)。是在一组数据(随机变量的可能结果)中出现频率最高(多)的变量值(数值)。用M0表示。众数主要用于测度分类数据的集中趋势,也适合作为顺序数据以及数值型数据集中程度的测度值。一般情况下,只有在数据量较大的情况下,众数才有意义。《理财规划师—基础知识》19常用统计量四分位数(quartile)。也称四分位点,它是一组数据排序后处于25%和75%位置上的值。四分位数是通过3个点将全部数据分为4部分,其中每部分包含25%的数据。显然,中间的四分位数就是中位数,因此通常所说的四分位数是指处于25%位置上的数值(称为下四分位数)和处在75%位置上的数值(上四分位数)。《理财规划师—基础知识》20常用统计量数学期望一般记作E(X)或μ表示。)(XE1iiiXpx为离散型) (为连续型) (Xdxxxf)(《理财规划师—基础知识》21数学期望的性质)()(XCCEXCE)()()(YEXEYXE为常数) (CCCE)()()()(YEXEXYE1234《理财规划师—基础知识》22常用统计量方差:一个随机变量X的取值与期望值的离差平方之期望值即为方差。一般记为D(x)、Var(x)、。标准差(均方差):方差的算数平方根。)(2x})]({[)()(22xExExVarxD)()(xDxVar《理财规划师—基础知识》23常用统计量样本方差使用样本数减去1后去除离差平方和,其样本数据减1即n-1称为自由度。样本标准差即是样本方差的算数平方根。nii)XX(nS12211nii)XX(nS1211《理财规划师—基础知识》24常用统计量协方差:X,Y是两个不互相独立的随机变量,则有称为随机变量X与Y的协方差。)]}()][({[),(yEyxExEyxCov《理财规划师—基础知识》25协方差的性质)()()(),(yExExyEyxCov)(),(),,(),(xDxxCovxyCovyxCov ),(2)()()(yxCovyDxDyxD),(),(),(,),,(),(2121yxCovyxCovyxxCovbayxabCovbyaxCov是常数1234《理财规划师—基础知识》26常用统计量0)(,0)(,)()(),(yDxDyDxDyxCovxy 称为随机变量X与Y的相关系数。是一个无量纲的量。ρ=1完全正相关ρ=0不相关ρ=-1完全负相关相关系数:《理财规划师—基础知识》27第三节收益与风险货币时间价值货币时间价值计算–单利终值和现值、复利终值和现值、年金收益率的计算预期收益率、投资组合的收益率、内部收益率、持有期收益率、到期收益率、贴现收益率、必要收益率、息票收益率风险度量方差和标准差、变异系数、β系数《理财规划师—基础知识》28货币时间价值一般用利息来衡量货币时间价值;但其实质是社会(资金)平均利润。分析货币时间价值时,不考虑通货膨胀和风险因素。货币时间价值可以用短期国债率、银行存款利率等作为参照值。一般以无风险和无通货膨胀的利率作为货币的时间价值。《理财规划师—基础知识》29货币时间价值单利终值和现值的计算单利是只就本金计息TRPI式中:I为利息;P为本金;R为利率;T为时间(期限)。注意:年利率为%;月利率为‰;日利率为‰。;在计算时,资金时间的单位要与利率表示的时间单位保持一致。《理财规划师—基础知识》30货币时间价值单利终值和现值的计算单利终值单利现值)ni(VVn10niVVn10《理财规划师—基础知识》31货币时间价值复利终值和现值的计算复利即是本利和(利加利)复利终值复利现值nn)i(VV10nnnn)i(V)i(VV1110《理财规划师—基础知识》32货币时间价值年金定期、等额的系列收支。普通年金即后付年金:每期期末收付的年金。普通年金终值普通年金现值i)i(AVnsn11i)i(AVns110《理财规划师—基础知识》33货币时间价值偿债基金根据年金终值计算公式,可得:称为偿债基金系数。年资本回收额与偿债基金计算同理11nsn)i(iVA11n)i(i《理财规划师—基础知识》34货币时间价值先付年金(预付年金):每期起初支付的年金。预付年金终值预付年金现值1111i)i(AVnsn11110i)i(AV)n(s《理财规划师—基础知识》35货币时间价值永续年金无限地定期支付的年金。永续年金终值为无限大。永续年金现值iAVs10《理财规划师—基础知识》36货币时间价值递延年金是指第一次支付发生在第二期或第二期以后的年金。一般用m表示递延期数。递延年金终值与普通年金终值计算相同递延年金现值–方法1:把递延年金视为n期普通年金,求出递延期末的现值,然后再将此现值调整到第一期初。–方法2:是假设递延期中也进行支付,先求出(m+n)期年金现值;然后,扣除实际并未支付的递延期(m)的年金现值;即可得出最终结果。《理财规划师—基础知识》37收益率的计算收益率:是指投资收益额与本金之比。收益=基本收入(利率和股利)+资本收入(价差收益)001010011P)PP(PIP)PP(IR《理财规划师—基础知识》38预期收益率单个产品或单项投资的预期收益率投资组合的预期收益率niiiRP)R(E1niiiRW)R(E1《理财规划师—基础知识》39投资组合的收益率类似于投资组合预期收益率,只是其中参数的经济意义不同而已。wi:第i项投资在投资组合中的权重;ri:第i项投资的收益率。nnniiirwrwrwrwr22111《理财规划师—基础知识》40其他收益率内部收益率(IRR),也称内含报酬率,是使得NPV=0的折现率。主要用于投资方案(项目)的评价持有期收益率持有某种金融工具,在其未到期之前的某个时点卖出,所获得的收益率。《理财规划师—基础知识》41其他收益率到期收益率持有购买的某种债券,直到到期时的收益率。使未来各期利息收入、到期本金收入现值之和等于债券(购买)价格的贴现率。当期收益率是债券息票到期收益率的近似值,等于年息票利息与债券价格之比。《理财规划师—基础知识》42其他收益率贴现收益率贴现额与本金之比贴现实得额=票据面额×(1-贴现率×未到期天数÷360)必要收益率投资者要求的最低回报率,如期望收益率必要收益率=无风险收益率+风险收益率息票收益率即是票面利率《理财规划师—基础知识》43风险的度量方差与标准差变异系数β系数《理财规划师—基础知识》44风险的定量表达方差一个随机变量x的方差,可表示为:})]({[)(2xExExVar标准差一个随机变量x的标准差,可表示为:})]({[)()(2xExExVarx《理财规划师—基础知识》45变异系数标准差与数学期望的比值适用于不同方案(项目)的期望值不同时的比较表示每一单位所承担的风险)(变异系数XE
本文标题:理财规划师_基础知识授课PPT7(PPT47页)
链接地址:https://www.777doc.com/doc-1126530 .html