您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 人教版初中数学教案【汇集5篇】
参考资料,少熬夜!人教版初中数学教案【汇集5篇】【导读指引】三一刀客最漂亮的网友为您整理分享的“人教版初中数学教案【汇集5篇】”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!有理数的大小比较教案【第一篇】一、背景知识《有理数的大小比较》选自浙江版《义务教育课程标准实验教科书数学七年级(上册)》第一章《从自然数到有理数》的第5节,有理数大小比较的提出是从学生生活熟悉的情境入手,借助于气温的高低及数轴,得出有理数的大小比较方法。课本安排了做一做等形式多样的教学活动,让学生通过观察、思考和自己动手操作,体验有理数大小比较法则的探索过程。二、教学目标1、使学生能说出有理数大小的比较法则2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。3、能正确运用符号∵∴写出表示推理过程中简单的因果关系。三、教学重点与难点重点:运用法则借助数轴比较两个有理数的大小。难点:利用绝对值概念比较两个负分数的大小。四、教学准备多媒体课件五、教学设计(一)交流对话,探究新知1、说一说(多媒体显示)某一天我们5个城市的最低气温从刚才的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会说从中知道广州的最低气温10℃比上海的最低气温0℃高,有些学生会说哈尔滨的最低气温零下20℃比北京的最低气温零下10℃低等;不会说的,老师适当点拔,从而学生在合作交流中不知不觉地完成了以下填空。比较这一天下列两个城市间最低气温的高低(填高于或低于)广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;武汉__________广州。2、画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?(3)温度的高低与相应的数在数轴上的位置有什么?(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,参考资料,少熬夜!5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。教师趁机追问,原点左边的数也有这样的规律吗?从而激发学生探索知识的欲望,进一步验证了原点左边的数也有这样的规律。从而使学生亲身体验探索的乐趣,在探究中不知不觉获得了知识。)由小组讨论后,教师归纳得出结论:在数轴上表示的两个数,右边的数总比左边的数大。正数都大于零,负数都小于零,正数大于负数。(二)应用新知,体验成功1、练一练(师生共同完成例1后,学生完成随堂练习1)例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用分析:本题意有几层含义?应分几步?要点总结:小组讨论归纳,本题解题时的一般步骤:①画数轴②描点;③有序排列;④不等号连接。随堂练习:P19T12、做一做(1)在数轴上表示下列各对数,并比较它们的大小①2和7②-6和-1③-6和-36④-和-(2)求出图中各对数的绝对值,并比较它们的大小。(3)由①、②从中你发现了什么?(学生小组讨论后,代表站起来发言,口述自己组的发现,说明自己组发现的过程,逐步培养学生观察、归纳、用数学语言表达数学规律的能力。)要点总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。在学生讨论的基础上,由学生总结得出有理数大小的比较法则。(1)正数都大于零,负数都小于零,正数大于负数。(2)两个正数比较大小,绝对值大的数大。(3)两个负数比较大小,绝对值大的数反而小。3、师生共同完成例2后,学生完成随堂练习2、3、4。例2比较下列每对数的大小,并说明理由:(师生共同完成)(1)1与-10,(2)-与0,(3)-8与+2;(4)-与-;(5)-(+)与-|-|分析:第(4)(5)题较难,第(4)题应先通分,第(5)题应先化简,再比较。同时在讲解时,要注意格式。注:绝对值比较时,分母相同,分子大的数大;分子相同,则分母大的数反而小;分子分母都不相同时,则应先通分再比较,或把分子化相同再比较。两个负数比较大小时的一般步骤:①求绝对值;②比较绝对值的大小;③比较负数的大小。思考:还有别的方法吗?(分组讨论,积极思考)4、想一想:我们有几种方法来判断有理数的大小?你认参考资料,少熬夜!为它们各有什么特点?由学生讨论后,得出比较有理数的大小共有两种方法,一种是法则,另一种是利用数轴,当两个数比较时一般选用第一种,当多个有理数比较大小时,一般选用第二种较好。练一练:P19T2、3、45、考考你:请你回答下列问题:(1)有没有的有理数,有没有最小的有理数,为什么?(2)有没有绝对值最小的有理数?若有,请把它写出来?(3)在于-且小于的整数有_____个,它们分别是____。(4)若a0,b(新颖的问题会激发学生的好奇心,通过合作交流,自主探究等活动,培养学生思维的习惯和数学语言的表达能力)6、议一议,谈谈本节课你有哪些收获(由师生共同完成本节课的小结)本节课主要学习了有理数大小比较的两种方法,一种是按照法则,两两比较,另一种是利用数轴,运用这种方法时,首先必须把要比较的数在数轴上表示出来,然后按照它们在数轴上的位置,从左到右(或从右到左)用)连接,这种方法在比较多个有理数大小时非常简便。六、布置作业:P19A组、B组基础好的A、B两组都做基础较差的同学选做A组。人教版初中数学教案【第二篇】问题描述:初中数学教学案例初中的,随便那个年级。20__字。案例和反思1个回答分类:数学20__-11-30问题解答:我来补答平行线的性质一、教材分析:本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章第3节平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。二、教学目标:知识与技能:掌握平行线的性质,能应用性质解决相关问题。数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、参考资料,少熬夜!锲而不舍的精神。三、教学重、难点:重点:平行线的性质难点:“性质1”的探究过程四、教学方法:“引导发现法”与“动像探索法”五、教具、学具:教具:多媒体课件学具:三角板、量角器。六、教学媒体:大屏幕、实物投影七、教学过程:(一)创设情境,设疑激思:1.播放一组幻灯片。内容:①火车行驶在铁轨上;②游泳池;③横格纸。2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?学生活动:思考回答。①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;教师:首先肯定学生的回答,然后提出问题。问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?引出课题——平行线的性质。(二)数形结合,探究性质1.画图探究,归纳猜想任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图).问题一:指出图中的同位角,并度量这些角,把结果填入下表:第一组第二组第三组第四组同位角∠1∠5角的度数数量关系学生活动:画图——度量——填表——猜想结论:两直线平行,同位角相等。问题二:再画出一条截线d,看你的猜想结论是否仍然成立?学生:探究、讨论,最后得出结论:仍然成立。2.教师用《几何画板》课件验证猜想3.性质1.两条直线被第三条直线所截,同位角相等。(两参考资料,少熬夜!直线平行,同位角相等)(三)引申思考,培养创新问题三:请判断内错角、同旁内角各有什么关系?学生活动:独立探究——小组讨论——成果展示。教师活动:引导学生说理。因为a‖b因为a‖b所以∠1=∠2所以∠1=∠2又∠1=∠3又∠1+∠4=180°所以∠2=∠3所以∠2+∠4=180°语言叙述:性质2两条直线被第三条直线所截,内错角相等。(两直线平行,内错角相等)性质3两条直线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)(四)实际应用,优势互补1.(抢答)(1)如图,平行线AB、CD被直线AE所截①若∠1=110°,则∠2=°.理由:.②若∠1=110°,则∠3=°.理由:.③若∠1=110°,则∠4=°.理由:.(2)如图,由AB‖CD,可得()(A)∠1=∠2(B)∠2=∠3(C)∠1=∠4(D)∠3=∠4(3)如图,AB‖CD‖EF,那么∠BAC+∠ACE+∠CEF=()(A)180°(B)270°(C)360°(D)540°(4)谁问谁答:如图,直线a‖b,如:∠1=54°时,∠2=.学生提问,并找出回答问题的同学。2.(讨论解答)如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,求梯形另外两角分别是多少度?(五)概括存储(小结)1.平行线的性质1、2、3;2.用“运动”的观点观察数学问题;3.用数形结合的方法来解决问题。(六)作业第69页2、4、7.八、教学反思:①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣。②学的转变:学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深参考资料,少熬夜!入其境。③课堂氛围的转变:整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。七年级人教版数学教案【第三篇】第一章有理数单元教学内容1、本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,?从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系。引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念。2、通过怎样用数简明地表示一条东西走向的马路旁的树、?电线杆与汽车站的相对位置关系引入数轴。数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系。(2)数轴能反映数的性质。(3)数轴能解释数的某些概念,如相反数、绝对值、近似数。(4)数轴可使有理数大小的比较形象化。3、对于相反数的概念,?从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分。4、正确理解绝对值的概念是难点。根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值。(2)有理数的绝对值是一个非负数,即最小的绝对值是零。(3)两个互为相反数的绝对值相等,即│a│=│-a│。(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)若│a│=│b│,则a=b,或a=-b或a=b=0.三维目标1、知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数参考资料,少熬夜!还是负数。(2)掌握数轴的画法,能将已知数在数轴上表示出来,?能说出数轴上已知点所表示的解。(3)理解相反数、绝对值的几何意义和代数意义,?会求一个数的相反数和绝对值。(4)会利用数轴和绝对值比较有理数的大小。2、过程与方法经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法。3、情感态度与价值观使学生感受数学知识与现实世界的
本文标题:人教版初中数学教案【汇集5篇】
链接地址:https://www.777doc.com/doc-11409353 .html