您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 《三角形内角和》数学教案优秀5篇
参考资料,少熬夜!《三角形内角和》数学教案优秀5篇【导读指引】三一刀客最漂亮的网友为您整理分享的“《三角形内角和》数学教案优秀5篇”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!角形内角和【第一篇】机智,开放地吸纳各种信息,善于捕捉教育契机,合理地调控自己的教学行为。2、教师的教学方式要适应学生的学习。新课程明确倡导动手实践、自主探究、合作交流的学习方式。这就要求教师的角色,应当从过去知识的传授者转变为学生自主性、探究性、合作性学习活动的设计者和组织者。在教学过程中,我给学生设置了一个开放的、面向实际的、富有挑战性的问题情境,让学生独立、自主地去探究验证其他学生已发现的知识,通过实验、操作、表达、交流等活动,经历探究过程,获得知识与能力,掌握解决问题的方法,获得情感体验。我想:只要我们坚持“为学习而设计”、“为学生的发展而教”,那么我们的课堂将会更加生机勃勃、充满智慧的欢乐和创造的快意。3、让每位学生都有所发展。这节课我进行了8次课堂巡视,其中4次参与学生的讨论、交流,两次分别对三名学困生进行重点辅导,巡视时关注面较广,目的性明确。但在“个别学生课堂行为表现”的重点观察中,一位学困生在前半节课中共举了两次手,未被我关注,之后再没举过一次手。课后这位学生找到我问我原因。我与他进行了个别谈话,问他为什么后半节课没再举手,回答是:“反正也不会提问到我。”学生的态度似乎有些不以为然,其实蕴含着不满。说明我们教师在课堂中不应忽略个体差异、害怕问题暴露,相反应充分重视、关爱学困生,让每位学生都有所发展。4、对数学学习的评价要做到既关注学生学习的结果,更要重视他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。对学生的精彩回答应予以热情的肯定,促使学生的思维更加活跃。5、加强对学生的思维和方法的指导。创造一个好的数学问题情境,提供孩子们理解数学的模型和材料是教学设计活动中的第一步,但是要让学生看到其中所蕴涵的数学观念,作为教师不能让这些数学活动只停留在表面。因此我鼓励儿童进角形的内角和【第二篇】教学内容:义务教育课程标准实验教科书xx版小学数学四年级下册第42~46页教学目标:1、通过量、剪、拼、折等数学活动,让学生亲自实践操参考资料,少熬夜!作,发现规律,主动推导并得出“三角形内角和是180°”的结论,会应用这一规律进行计算。2、在操作、验证三角形内角和的过程中,体验解决问题方法的多样性,发展空间观念,提高初步的逻辑思维能力。教学过程:一、创设情境,导入新课1、谈话:我们已经认识了三角形,你知道哪些关于三角形的知识?2、我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?我们一起去看看吧!播放课件详细内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是的。”一个小的锐角三角形很委屈的样子说:“是这样吗?”(它们在争论谁的内角和大。)你知道什么是三角形的内角和吗?通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。3、故事中到底谁说得对呢?今天我们就来研究三角形的内角和。设计意图从学生的心理、兴趣和意愿为出发点,利用故事的形式提出疑问,激发学生的学习兴趣,提高学生探索的积极性。二、自主探究、发现规律1、探究三角形内角和的特点(1)量一量师:你认为怎样能知道三角形的内角和?生:把三角形的三个内角分别量出来,再用加法算出三角形的内角和。学生活动(小组合作---每组准备三种不同的三角形)量角,求和,完成第43页的表格。学生交流汇报测量结果。师:从刚才的交流中,你发现了什么?生:不管是锐角三角形、直角三角形还是钝角三角形,内角和都是180°。(在量的过程中,由于误差,有的学生可能算出内角和在180°左右,这时教师要相机诱导:在测量的过程中出现一些误差是正常的,因为同学们画的角不够标准,量角器的不同,还有本身测量的原因都可能导致误差。)师:看来量一量会出现误差,那么你还有其它的更科学的办法进行验证吗?(2)拼一拼学生分小组活动,教师参与学生的活动,并给予必要的指导。学生展示交流,师:从大家的交流中,我们发现都可以把参考资料,少熬夜!三角形的三个内角拼成一个平角,证明“三角形内角和是180°”。(3)折一折小组活动,学生交流生1:将正方形(或长方形)纸沿对角线对折,这样,就折成了两个大小一样的三角形。因为正方形(或长方形)的四个直角的和是360°,所以三角形的内角和就是它的一半,是180°。生2:直角三角形的两个锐角可以折成一个直角,也就是说,在直角三角形中,两个锐角的和是90°,因此三角形内角和就是180°。2、归纳师:通过刚才的活动,我们得出了什么结论?生:三角形的内角和等于180°。3、师谈话:三个三角形争论的问题现在能解决了吗?你现在想对这三个三角形说点什么?学生畅所欲言,对得出的规律做系统的整理。设计意图动手实践,自主探索,亲身体验,是学习数学的重要方式。学生分组合作,量一量、拼一拼、折一折,通过多种感官参与比较、分析从而自主探索得出结论,得到的不仅是三角形内角和的知识,也使学生学到了怎样由已知探索未知的思维方式与方法,培养了他们主动探索的精神。三、灵活运用,巩固练习师:好,大家已经发现了“三角形内角和是180°”这一规律,你能应用这个规律解决一些实际的问题吗?1、判断钝角三角形比锐角三角形的内角和大。()锐角三角形的两个内角和小于90°。()一个三角形最少有两个锐角。()一个钝角三角形最少有一个钝角。()学生判断并说出理由。2、自主练习第6题练习时,先让学生独立填空,再说说自己是怎么想的,然后用量角器验证计算的结果。小结:以后如果遇到求一个三角形内未知角的度数时,我们可以用计算的方法算一算,简单又精确。3、游戏:选度数,组三角形(课件显示如下)请选出三个角的度数来组成一个三角形10°18°15°150°130°72°20°50°70°35°75°52°56°54°58°60°学生回答的同时,教师操作课件,把学生选择的度数拖入方框内,通过电脑计算相加是否等于180°,来验证学生的选择是否正确。验证学生选的对了以后,再让学生判断选择的度参考资料,少熬夜!数所组成的三角形按角的大小分类,并说出理由。[设计意图]用已学到的新知解决实际数学问题,认识学数学的价值,再次体验成功,增强学习数学的兴趣。尤其是第三个练习,依据学生的年龄特征和认知水平,设计探索性和开放性的问题,注重拓宽学生的思维活动空间。四、课堂总结、深化认识谈话:这节课你学会了什么?解决了什么问题?是怎样解决的?设计意图不仅从知识方面进行总结,还引导学生回顾发现问题、提出问题、解决问题的过程,关注学生学习过程中的情感体验。既让学生习得一种学习方法,又培养了学习兴趣。课后反思:本节课学生以小组为单位进行合作学习,从自己的已有经验出发,积极地进行操作、测量、计算,并对自己的结论进行思考、分析。在充分发挥学生主体作用,放手让学生开展探究的同时,教师也恰到好处的发挥了引导作用。整个探究过程学生是自主的、有积极性的,在获得数学结论的同时学习了科学探究的方法,为今后的学习打下了坚实的基础。角形的内角和【第三篇】教学内容:教科书p28例题、“试一试”p29“想想做做”(三角形的内角和)教学目标:1、让学生通过观察、操作、比较、归纳,发现“三角形的内角和是180°”。2、让学生学会根据“三角形的内角和是180°”这一知识求三角形中一个未知角的度数。3、让学生在学习活动中进一步增强探索的意识,发展观察、归纳、概括能力、和情推理能力和初步的空间观念。教学重、难点:探索三角形内角和是180°教学准备:量角器三角尺正方形纸等教学过程教师活动学生活动创设情境激趣导入请量出自己准备的三角形的三个角的度数谈话设疑:只要你们说出其中两个角的度数,我能猜出第3个角的度数师生互动生说师猜用自己的三角形按要求操作同桌交流(小组交流)对照检查(有异议的做好记录)自主探索获取新知初步感知内角和180°实验验证自主探索请观察自己手中的三角板它们是什么三角形?屏幕显示同样的三角形,指名指角取出各自的三角板观察交流(它们都是直角三角形)互相指三个角叙述:这三个角是三角形的三个内角。你知道三角板三个内角的和是多少度吗?检查学生活动情况(测量结果、计算结果)指名说内角和提问:你发现了什么?三角尺的三个内角和是180°,是不是每个三角形的内角和都是180°呢?(认识内角,互相交流)分组活动量角度算内角和小组交流各自的想法90°+60°+30°=180°90°+45°+45°=180°(两个三角板内角和都是180°)猜测并交流你打算用什么方法验证呢?(根据情况适当提示不同的方法)巡视指导了解学生实验情况组织学生演示、交流同参考资料,少熬夜!桌讨论汇报交流分组合作验证三角形内角和交流实验方法可能运用的实验方案(提示不能只用一种三角形):①画一个三角形,分别量出3个角的度数,并算出3个角的度数和(可能会出现不同情况,要说明:测量的结果存在误差是正常情况,同时引导发现它们的和都在180°左右)②撕下三角形的三个内角并把它们拼在一起(投影演示):拼成一个平角③折三角形的三个内角,使它们正好折在一起(投影演示):拼成一个平角结合实验交流情况,提问:通过多次实验,你们能得出什么结论吗?板书:三角形的内角和是180°现在你能像老师那样猜出角度吗?互相交流、提示(三角形的内角和都是180°)同桌互相猜角度应用知识解决问题“试一试”出示“试一试”巡视个别指导提问:∠3多少度?你是怎么算的?(适当提问)请大家量一量,看看与算出的结果是否一样?独立完成∠3角度的计算交流180°-75°-39°=66°180°-(75°+39°)=66°独立量角度并交流(相同)“想想做做”第1题提出练习要求你是怎么算的?第三题还可以怎么算?为什么?独立完成未知角的计算交流算法(从180°中依次去减)观察交流:90°-55°=35°综合运用延伸扩展“想想做做”第2题用两块完全一样的三角形可以拼成一个三角形吗?(学生拼好后选择不同拼法展示)哪些是拼成的三角形的内角?这些角分别是多少度?拼成的三角形的内角和是多少度?结合学生回答,小结:任何一个三角形的内角和都是180°独立动手实践交流不同拼法小组中分别指出拼成的三角形的内角,并且说出它们的角度独立计算,交流:拼成的三角形的内角和还是180°“想想做做”第3题提出操作要求正方形的内角和是多少度?怎么算?对折后是什么图形?内角分别是多少度?内角和呢?再对折后图形有什么变化?内角分别是多少度?内角和呢?两次对折出的三角形什么在变?什么没变?出示教师用三角尺,与你们的三角尺比一比,谁的三角尺内角和大?独立按要求操作并填写四个内角都是直角,内角和360°对折后是三角形,三个内角分别是:90°45°45°,内角和是180°再对折后是三角形,三个内角分别是:90°45°45°内角和是180°两次对折出的三角形大小在变,内角和没变一样大。任何一个三角形内角和都是180°“想想做做”第4题提出练习要求它们各是什么三角形?独立完成角度的计算并交流判断交流并说明理由“想想做做”第5题出示第5题你是怎么算的?(结合回答板书)比较两种算法,你喜欢哪种?你有什么发现?独立完成计算并交流180°-90°-35°=55°或90°-35°=55°(喜欢下面一种的会较多)求直角三角形的一个锐角,用90°减另一个锐角的度数,计算比较简便“想想做做”第6题如果一个三角形有两个直角,结果会怎样?那么一个三角形最多有几个直角?一个三角形最多有几个钝角呢?为什么?讨论交流:内角和会大于180°一个三角形最多有1个直角讨论交流,汇报交流结果全课总结这节课你学到了哪些数学知识?参考资料,少熬夜!教学随笔:角形内角和【第四篇】设计思路遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。学生对三角尺上每个角的度数比较熟悉,就从这里入手。先让学生算出每块三角尺三个内角的和是1
本文标题:《三角形内角和》数学教案优秀5篇
链接地址:https://www.777doc.com/doc-12027208 .html