您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 数学解决资金管理的方法
数学解决资金管理的方法(1)2007-10-3115:52:22作者:佚名来源:互联网文字大小:【大】【中】【小】简介:投注策略和风险控制博彩俺刚刚入门,觉得首先是要学会保证自己的胜率,保证不输,有一个稳定的胜率,在这个前提下研究投资策略和运用投资策略才有作用,小弟现在的水平还未到运用策略的时候;尽管在投注操作中...关键字:资金管理投注策略和风险控制博彩俺刚刚入门,觉得首先是要学会保证自己的胜率,保证不输,有一个稳定的胜率,在这个前提下研究投资策略和运用投资策略才有作用,小弟现在的水平还未到运用策略的时候;尽管在投注操作中未曾系统化的运用,但是研究是有必要的,起码能够调整自己的投注心态,嘿嘿,何况,最为重要的是,投资策略的知识不仅仅是只运用在博彩方面,事实上,相信很多朋友都明白,如果想在这个领域里面获益并长期坚持下去,当作一个投资渠道,那么,仅仅靠这样的一个渠道是远远不够的,这里就涉及到我们的另外一个话题,风险控制,如果你的所有的投资渠道仅仅是玩球这么一项,我建议你还是不要研究什么投资策略什么风险控制了,因为你还未曾意识到这些研究的本质所在。而这里实际上是一个浩大的系统工程,各种观点和理论都存在并且可能是冲突的,我现在的认知也是皮毛的,整理一下和大家一起来讨论这个问题,讨论是否我们能够从中收获点什么,首先声明,这里的多数文字都是整体转贴的,非本人所作,这里先对那些原贴原文的朋友们说声对不起,同时也说声谢谢,谢谢你们的辛苦劳动,在下面的描述中可能没有每一句或者每一段都非常清晰的标明是转贴或者引用,小弟我只是做了整理的一点工作和发表了一点的个人的意见(呵呵,恳请如果引用转贴的人也尊重一下小弟的工作成果)。同时,这里面可能存在观点冲突,存在各样的问题,也说明一下,本贴引用的内容不完全代表个人意见。在本贴中我想一起和朋友们讨论下面的一些问题:1。常见的kelly方程2。kelly方程的一些数学推导和个人理解3。kelly方程和投注的结合,kelly方程不等于赢钱4。kelly方程和kelly值,两个不同的概念5。一片风险控制的文章6。资金和策略,一些极端措施和大家的观点7。如何系统化的应用kelly方程是什么样的?或许其真貌很少得到正确的描述,我们见到的多数是其衍生的或者简化的,个性化的,这些其实也是对投资控制很好的指导了。常见的有:a.精明的凯莉方程式:b*(e*o-1)opt=----------------------------------------(精明方程)3*(o-1)由于图片不能贴,只能用简单拼凑了,roycaich注上式具体含义如下:opt=最佳投注额(OptimizedStakeSize)b=可支配的总投注额(Currentbankroll)o=小数形式的赔率(Oddsavailableindecimalformat)e=取胜预期或者说预计胜率(Estimatedprobability)b.最为常见的,最多被引用的p*o-1b=————-------------------------------(基础方程)o-1p=胜率(theprobabilityofcollectingthebet.(0o=含本金的赔率(thegrosspayoff(amultipleofstake)incaseyouwin.(o1))b=最佳投注额比例(givesthefractionofyourcurrentbankrollthatshouldbewageredonthatspecificbet.)上述公式其实也是kelly方程比较实质的一个公式,至于怎么得出来的,后面我们再来提及,roycaich注c.另一种解释(引用EdSeykota的风险管理文章中的描述)TheKellyFormulaK=W-(1-W)/R---------------------------------(个人因素方程)K=下一笔交易占资本比例W=历史胜率R=报酬例如铜板例子K=.5-(1-.5)/2=.5-.25=.25.凯利方程式指出,最佳化的比例是25%.注意,W和R都是长期的平均数字,随着时间,K会小小的改变。--W是指你自己的历史胜率,R是庄家开出的赔率(小数点方式的),roycaich注d.一些变化的方程:1/2,1/4kelly方程,即在应用中将投注值运用kelly方程计算得到后再乘以一个系数,即:p*o-1b=K×————-----------------------------(系数变形方程)o-1其中,p,o的解释参看基础方程所描述的含义,k为一个系数,一般而言选择1/2,1/4这样的系数,0这个公式在具体应用中和个人的喜好中自己选择,后面的文章我们会来提及相关的应用和一个简单的实例很明显,上面的四个方程是不同的,那么,这四个方程有什么不同?实际上我们可以认为基础方程是核心,也是真正的kelly方程,这个方程告诉我们,投注的额度其实跟你自己有多少钱是没有关系的,kelly方程只是告诉你一个比例而不是货币单位,眐elly方程也是跟你个人的胜率无关的--你这个人很红场场胜利,对于一场比赛kelly方程是这样的,你这个人很黑,十投九黑对于同样一场比赛kelly方程还是那样的。系数变形方程呢,只是基础方程的一个基本的变形,在后面我们会来讨论如何应用变形方程,这个会跟庄家的期望利润有关系。但是在这两个方程里面,我想总是有人对于公式中的p,o有些不了解,实际上,这里的o比较简单,就是庄家开出的小数点形式的赔率(也称之为包含本金的赔率),p呢?p是什么?是你个人的胜率?博彩公式赔率转换而来的概率?mso上面看到的转换的概率?实际上p最佳的解释是客观事实所可能导致的概率,你可以用泊松公式求得,你可以用elo求得,你可以个人认为(个人期望胜率),你也可以从博彩公司的赔率转换而来(如果你能够有正确的公式的话,当然你也可以估算)。在后面我们再来讨论怎样理解这个东西以及如何获得这个东西以及我个人的一点心得。那么,所谓的聪明方程是什么呢?实际上很简单,就是和你的资金做一个简单的关联,简单到只是取了你个人资金的一个固定系数1/3,所以我个人并不认为是一个聪明的方程。个人因素方程呢,则是如何结合你个人的胜率的,这个跟个人成绩有较大的关系,又更加超脱,但是如果你不是一个具备稳定胜率的高手,那好像对你的参考意义就不大了,后面讨论。四个方程,从基本,到结合个人资金,到结合个人胜率,如果系统化的应用,肯定就很强啦,希望大家一起来探讨如何系统性的利用这些方程,小弟我先抛砖了,大家可不要拿这砖来砸我阿kelly方程的来由和kelly的文章kelly方程就是kelly写的一篇论文里面的一个观点,实际上其方程和方程的推导如下(本人的数学和英文水平有限,翻译不对之处还请各位见谅,同时请高手们指点):博球者的资金变化取决于投资的次数和投注的选择对象,在n次投注之后其资金的变化2^n次(2的n次方),实际上这样的增长变化在经济中比较常见,其资金的增长率G,G可以用公式:1V(N)G=lim-log______------------(资金增长公式,其中N趋无穷大,V(0)表示本金,V(N)表示N次之后的金额)NV(0)其中是n次投注之后的资金值,是首次资金,假设每次投资用了比例的资金,赢了W次,输了N次,那么,上述方程可以转化为:G=P*log(1+L)+(1-p)log(1-L)注,有更多的方程公式,由于无法贴上来,小弟只好放弃,代以更加简化的东西了,roy注这个实际上就是的期望方程,p就是赢的概率,1-p自然是输的概率,要想盈利,自然就是求上述公式的最大值的一向必要条件了,可以推算(俺就不详细说了,求导就是了)出来,这里说明了一个关键点,想盈利,必须要有50%以上的胜率,否则一切白忙活,这个是不是非常好理解呢―――这个其实也就是kelly方程里面所隐含的告诉我们的一个道理,这里就顺便提了出来。回到kelly方程本身,那么,怎么从资金增长方程变化到kelly方程呢?实际上如何使得G最大化了,或者我们问,在那些条件下G能够获得较好的期望值,到了这里就头大了,kelly先生的论文不是很长,推导呢俺勉强也能看懂一点,但是就是公式太多了,公式太过于难于描述了,不过还好,kelly先生还是很大方的,有兴趣的朋友可以在网上找到他的论文,google一下就是了。这样的一些公式推导或许对很多人来讲都是比较困难的,索性我们不关注这个,我把我自己的留意点说说,公式推导当中我们必须假定:庄家给出的赔率是根据事实的可能概率来制定的,即p*o=1但是很显然,庄家从来不会给出一个p是可以通过o简单的计算得到的。Kelly在文中提到,如果把o当作是庄家给出的公平赔率,那么,我们倒是可以得到一个结果,那就是是的最大化资金方程得到最小值,即归0。嘿嘿,这里面就比较搞了,文中要求的是需要有一个公平的p,但是不希望有一个公平的o;这两者矛盾嘛?不矛盾,庄家给出的总归不是公平的o的,因为庄家知道公平的p是什么但是庄家不会show给我们看,这里就告诉我们,如果仅仅是依靠庄家给出的o来猜测那个p或者计算那个p,多半我们会比较惨;kelly还提示我们另外一个好玩的东东:在公式推导的过程中我们接受一种事实,这个事实就是每个投注的人总是忽略那些所谓的信息灵通或者内幕消息的投注的――模型可不能最大化假球之类的出现的时候的资金。这也告诉我们,如果你知道假球,恭喜你先生,你不用考虑什么资金控制了,倾尽全部就是了,保证利益最大化。我不知道多少人看过kelly先生的这个论文和这里面的一些提醒,但是我还未曾在其原文之外的地方看见有人给出这些信息,我想,这里面非常关键的一个就是,公式只是死的,不能仅仅关注公式本身,你还应该知道公式的缺陷和公式的条件。说道条件,天,还有一个重要要素,那就是假设所有的投注金额都从输家转移到赢家,那庄家吃什么?翻译一段kelly先生的结论来和大家共享(错误之处请谅,最好是能够指出帮忙纠正,先谢过了)在这里介绍的赌徒(原文如此)是和一般的赌徒有着本质的明显区别的(呵呵,看来是聪明博球者,roycaich自己的见解,下面在翻译时将根据个人的理解将涉及相关的人物代称更改为博球者和赌徒,博球者就是指合理利用kelly方程管理自己的人,赌徒就是指那些普通的),在每次投注的时候他期望获得logV(V为返回资金)的最大值,其原因跟用来管理资金的方程无关,而仅仅是和log函数相关,能够将大数定理应用于上面的该函数能够被运用于重复投注中。假设条件不同,例如,他老婆只允许他每周投注1元并且不允许他的回报用于再投资,那每个投注时他都期望赌资获得最大值,在资金最大化的情况下每次都把他所有的钱投入到投注中。一种可能的情况是,如果博球者与众不同的分配他的资金,他能够领先于其它赌徒。――这段话我想描述了一个事实,要有条件,然后还要理解并遵守那些条件,这样才能够体现kelly方程的意义。Roycaich注需要注意的是,这里我们展示了某种可能,那些(采用我们的策略)管理资金的博球者的获益将会高于那些和我们(的策略)不同、依旧对于每个接受到的符号采用固定比例来管理资金的赌徒们的获益。如果需要,我们的投资策略可以被证明将是最为出色的,不过(文中)并没有给出展示。尽管这里采用的模型是从实际的博彩活动中总结出来的,模型当然同样适用于生活中的其它经济领域。定律的必要条件在于获利资金的可再投资性和投资资金(下注的注额)在不同投资类别下的可灵活变更性,定理的应用渠道应该和投资者实际的投资资金等现实渠道相适应。让我们概要的总结一下本论文的成果:如果投注者通过通讯渠道能够投注并且每次都将通过某一实体将其一定比例的资金投入,他的资金将指数增长或者下降。如果(博彩公司的,roycaich注)赔率是和交易实体发生的可能性概率相一致的(例如,等同于可能概率的倒数),(资金增值的)指数增长率的最大值就等同于交易的频率;如果赔率并不公平,例如,和这个实体事件发生的概率不一致而是和其它的某些可能性概率相一致,指数增长率的最大值就会比那些的比没有总量等于信息交易频率的渠道先
本文标题:数学解决资金管理的方法
链接地址:https://www.777doc.com/doc-1210146 .html