您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 资本积累资本积累的黄金率人口增长与技术进步经济增长理
资本积累资本积累的黄金率人口增长与技术进步经济增长理论的深化第三章经济增长经济增长是指一国产出水平的提高,通常情况下,用一国人均GDP的增长率来衡量一国的经济增长情况。促进经济增长是一国经济政策的核心目标。本章以索洛模型为基础,对经济增长进行分析。一、基本假定索罗增长模型是为了说明在一个经济中,资本存量的增长、劳动力的增长以及技术进步如何影响一国物品与劳务的总产出。对于索罗增长模型的考察首先从其中的供给和需求如何决定资本积累开始。为了简单起见,首先让劳动力和技术保持不变,以后再放松这些假定。这样的假定不会影响结论的正确性。第一节资本积累1.索罗增长模型在供给方面的假定生产函数Y=F(K,L)索洛模型采用的生产函数是新古典主义的,新古典的生产函数表明,产出取决于资本存量和劳动力,技术因素隐含在函数F的形式中。新古典生产函数的基本特征是劳动和资本两种要素之间可以平滑替代,即函数F有连续的一阶和二阶导数。并且满足以下性质:(1)各要素的边际产出大于零且递减。即:00002222LFLFKFKF,,(2)规模报酬不变,也就是说生产函数满足一次齐次性,即λY=F(λK,λL),对于任意的正数λ,上述公式都成立。(3)资本(或劳动)趋向于0时,资本(或劳动)的边际产出趋向于无穷大;资本(或劳动)趋向于无穷大时,资本(或劳动)的边际产出趋向于0。为了分析更简单,可以把索洛模型中的变量都表示成人均的形式,只要用λ=1/L,并用小写字母表示人均数量,则索洛的生产函数就是:y=F(k,1)=f(k)即人均产出值和人均资本有关,是人均资本的函数。y0f(k)k生产函数2.索罗增长模型在需求方面的假定模型中的需求分为消费和投资两部分。即人均产出y分被为人均消费c和人均投资i。模型中的消费取决于:c=(1-s)y。s是该经济的储蓄,0≤s≤1。在此基础上,我们有:y=(1-s)y+iy=y-sy+ii=sy即:一个经济的人均投资等于人均储蓄,这是产品市场均衡的要求。1.影响资本存量变化的因素:投资(I)+折旧(D)一是投资。投资越多,资本存量越大。投资的决定取决于两个主要因素:(1)投资取决于人均资本存量;(2)投资取决于储蓄率。二、资本积累和稳态由于人均产出只与人均资本有关,现在讨论一个经济的资本存量的变化是如何影响经济增长的。y0y=f(k)i=sf(k)yci产出、消费和投资k二是折旧。折旧是资本存量随着使用和时间的变化而损耗和减少的资本量。为简单起见,假定一个经济中所有的资本都以一个固定的比例δ减少,把δ称为平均折旧率。则,每年折旧掉的资本数量就是D=δK,每年折旧掉的人均资本数量就是d=δk,也就是人均资本的函数。可以用下图说明。δkδkk0折旧由上述内容可见,折旧既取决于折旧率,也取决于人均资本存量。当我们把影响资本存量的上述两个因素放在一起时,有:kksfkik)(2.资本存量的稳态根据上述公式,人均资本存量的变化等于人均投资减去现有资本的人均折旧,在储蓄率和折旧率一定的情况下,资本存量的变化只取决于资本存量本身和生产函数的形式。对此可以通过下图加以说明。i0δksf(k)kk1k*k2投资、折旧和稳态从图中可以看出:(1)人均资本存量越高人均投资越大,同时人均折旧也越大。(2)人均资本存量的净变化可能大于0也可能小于0,这取决于在当前人均资本存量水平上人均投资和人均折旧的相对大小。(3)在储蓄率、折旧率一定的情况下,而生产函数具有边际产出递减的性质时,一定存在唯一的满足新增投资正好与折旧相同的点,此时△k=0,人均资本存量会保持稳态水平。即在k*点。在索洛模型中,稳定状态是一个经济的长期均衡,而且具有一种真正的稳定性。不管经济的初始水平是什么,它最后总会达到稳定状态的资本水平,并且即使由于某种意外情况的冲击,经济偏离了原来的稳定状态,它也能够回复到原来的稳定状态。如上图中的k1k2点所示。同时,根据稳态资本变化量的公式,我们可以得出储蓄率、折旧率、稳态人均资本、稳态人均产出水平四者之间的关系。)()(0)()(kfkskksfkksfkkkksfk有:表示。为稳态资本存量,则用若:由于,特别注意3.稳态的意义稳态不仅对应一个特殊的资本存量水平,而且也对应特定的产出、收入和消费水平。有较高的资本稳态水平,一定有较高的稳态产出水平。通过政策手段,调控储蓄率,可以影响稳态的产出水平。三、储蓄率对稳态的影响假定一个经济的储蓄率提高,则较高的储蓄率会对应较高的人均资本存量水平、较高的人均产出水平,因此也就有较高的人均收入和人均较高的消费水平。s2f(k)储蓄率变化对稳态的影响2k索洛模型表明:如果一个经济的储蓄率上升,这个经济稳定状态的人均资本存量和人均产出水平等都会上升。如果一个经济的储蓄率下降,那么就会出现相反的变化,即这个经济稳定状态的人均资本存量和人均产出水平等都下降。储蓄率是一个经济中稳态资本存量的关键决定因素。i,y0δkks1f(k)1ki1*=δk1*i2*=δk2*储蓄率对一个经济稳定状态的影响,说明了储蓄率的高低对经济增长速度的一方面影响。因为较高的储蓄率意味着较高的稳定状态,那么当一个经济的当前资本存量水平较低时,就意味着与稳定状态可能存在更大的差距,这样经济增长就会有较大的空间和速度。但较高的储蓄率导致较快的增长仅仅是暂时的。因为在长期中只要经济达到它的稳态,那么它就不会再继续增长。如果一个经济保持较高的储蓄率,它会保持较大的资本存量和较高的产出水平,但它无法保持较高的增长率,甚至无法保持增长。在模型的假设下,理论上除非增长率不断提高,否则人均意义上的经济增长是不可能长期持续的。第二节资本积累的黄金律上一节分析了储蓄率和稳态资本存量及收入之间的关系,现在进一步讨论什么是最优的资本积累水平这个问题。在第四节中则将讨论政府的政策如何影响储蓄率,这里的分析可以看作是给这些政策提供理论根据。首先假设政策制定者可以把储蓄率调控到任意水平。因此通过调控储蓄率,政策制定者可以得到任意资本存量的稳定状态。那么政策制定者会选择资本存量水平多高的稳定状态?是否资本存量水平越高越好呢?一、黄金率首先,资本数量和产出不是人们追求的根本目标,人们进行经济活动要实现的根本目标是长期中的消费福利,即他们在长期中能够消费的产品和服务的数量。由于高产出很可能是以高储蓄、高投资为代价实现的,而高储蓄则会减少当前消费的数量,因此高产出有可能不仅不能导致更多的消费,反而会降低消费,因此消费福利与产出并不完全一致。因此,一个以人们的福利为根本目标的政策制定者,应该以尽可能提高人们的长期消费总水平为制定政策和选择稳定状态的标准。也就是说,一个好的政策制定者应该选择长期消费水平最高的稳定状态。长期消费总水平最高的稳定状态被称为资本积累的“黄金律水平”,记为k*。那么一个经济的黄金律稳态水平在哪里呢?怎么能判断出一个经济的稳定状态是否正好是黄金律水平呢?要得到这些问题的答案,必须先知道一个经济稳定状态的人均消费水平是由什么决定的,然后才能知道怎样的稳定状态是使消费最大化的。为了找到稳定状态人均消费,可以从y=c+i开始,把上式写为c=y-i。由于稳态的人均产出为f(k*),稳态投资等于折旧δk*。因此,则稳态的人均消费为c*=f(k*)-δk*。即稳定状态的消费是稳态产出和稳态折旧之差。c*=f(k*)-δk*表明稳定状态资本水平的提高,对稳定状态的人均消费有两种对立的影响,它通过使产出增加提高消费,但同时又因为需要有更多的产出去替代折旧掉的资本而使消费减少,而最终稳定状态的消费究竟是提高了还是降低了则要看两者力度的相对大小。下图反映了稳定状态消费水平与稳定状态产出和稳定状态折旧之间的关系。该图表明存在一个资本积累水平,能够使得f(k*)和δk*之间的距离,也就是稳定状态消费水平最大化。这个稳定状态资本存量水平当然就是前面定义的黄金律水平k*。资本积累的黄金率水平f(k)Egcy0kδkgki=sgf(k)i=s1f(k)i=s2f(k)k2*c2*c1*k1*如果资本存量低于黄金律水平,资本存量增加所增加的产出比增加的折旧大,从而消费将会增加。在这种情况下,生产函数比δk*线更陡,从而当资本存量增加时,等于消费的两条线之间的距离倾向于上升。这时候促使稳定状态资本水平上升是有益的,能够提高稳定状态的消费水平。相反,如果资本存量已经在黄金律水平之上,那么资本存量的增加则将会反过来减少稳定状态的人均消费,因为产出增加小于折旧的增加。在这种情况下,应该降低稳定状态的资本水平。在资本的黄金律水平,生产函数和δk*线的斜率相同,消费达到最大值,这是应该维持的最佳水平的稳定状态。二、黄金稳态过程到目前为止,我们一直简单化地假定政策制定者能够通过选择,直接得到想要的稳定状态。在这种情况下,政策制定者选择有最高消费水平的稳态,即黄金律稳态,是理所当然的。但事实上任何一个经济在政策制定者确定它的稳定状态目标的时候,可能已经达到了一个非黄金律的稳态,因此政策制定者要选择黄金律的稳态,意味着必须有一种稳定状态的“变换”。这种在稳态之间的变换很可能会对消费、投资等发生冲击和影响,这些冲击和影响是否会有什么特别的后果,是否会阻止政策制定者去尝试实现黄金律稳态,如果要使政策制定者的选择决策更符合实际,那么这些问题是必须加以讨论的。需要考虑的有两种情况,一种情况是经济的初始稳态资本存量高于黄金律稳态,另一种是低于黄金律稳态。在这两种情况中,资本过少的第二种情况的问题更棘手。因为第一种情况实现黄金律稳态的手段是采取促进当前消费的政策,这通常阻力会较小一些,而后一种情况则迫使政策制定者必须考虑是否以减少当前消费为代价,提高储蓄率和将来的消费,因此必须对当前的消费利益和将来的消费利益进行评估和取舍。t00t原稳态投资i*原稳态消费c*原稳态产出y*我们先考虑一个经济的资本存量比它的黄金律稳定状态资本存量更多的情况。在这种情况下,政策制定者将采取降低储蓄率以降低稳态资本存量的政策。假设政策能够成功,储蓄率将在时刻t0降到最终会实现黄金律稳态的水平。下图反映了当储蓄率下降的时候,对产出、消费和投资分别有什么影响。icy资本过多时降低储蓄率的影响t0资本过少时降低储蓄率的影响0t原稳态投资i*原稳态消费c*原稳态产出y*tcy另外一种情况是,如果一个经济从低于黄金律稳态的资本水平开始,情况就有些不同了。这时候政策制定者必须提高储蓄率以达到黄金律稳态。下图表明将会发生什么情况。即在最终时,新的消费水平高于原来的消费水平。第三节人口增长和技术进步基本的索洛模型表明,高储蓄和高投资是能提高一个经济的稳定状态资本和产出水平,在原来资本水平较低(低于黄金律稳态水平)时也能够提高长期中的消费,并能够在该经济达到新的稳定状态之前的阶段中,促进经济增长,但资本积累本身却不能解释持续的经济增长。因为在储蓄率及其他条件不变的情况下,投资和产出最终都会逼近一个稳定状态,不再发生变化。因此,要解释持续的经济增长就必须对索洛模型加以扩展。扩展索洛模型以解释持续经济增长的方法是将基本的索洛模型中没有考虑的两个因素,即人口增长(也意味着劳动力增加)和技术进步引进模型。本节先把人口增长引入模型,即不再像在前两节中那样假设人口固定不变,而是假设人口和劳动力以固定速率n增长。一、人口增长的影响首先我们分析一下人口的增长对一个经济的稳态有什么影响。为了回答这个问题,首先分析一下人口的增长与投资和折旧一起,是如何影响人均资本积累的。如前所讲,投资会提高资本存量,而折旧则会减少它。现在有第三种力量也对人均资本产生影响,那就是人口或劳动力数量的增长,它会导致人均资本的下降。现在仍然用小写字母代表人均数量,因此y=Y/L代表人均产出,而k=K/L表示人均资本,但现在必须记住,这个劳动力数量L不再是固定不变的,而是不断增长的。因此,现在人均资本的变化为:△k=i-(δ+n)k该方程表明新
本文标题:资本积累资本积累的黄金率人口增长与技术进步经济增长理
链接地址:https://www.777doc.com/doc-1213780 .html