您好,欢迎访问三七文档
知识点三:弧、弦、圆心角与圆周角1、圆心角定义:顶点在的角叫做圆心角2.在同圆或等圆中,弧、弦、圆心角之间的关系:两个圆心角相等圆心角所对的弧(都是优弧或都是劣弧)相等圆心角所对的弦相等3、一个角是圆周角必须满足两个条件:(1)角的顶点在________;(2)角的两边都是与圆有除顶点外的交点。4.同一条弧所对的圆周角有__________个5.圆周角定理:1=2圆周角圆心角6.圆周角定理推论:(1)同弧或等弧所对的圆周角相等(2)半圆或直径所对的圆周角相等(3)90°的圆周角所对的弦是直径。注意:“同弧或等弧”改为“同弦或等弦”结论就不一定成立了,因为一条弦所对的圆周角有两类,它们是相等或互补关系。7.圆内接四边形:定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做,这个圆叫做。性质:圆内接四边形的对角夯实基础1.如果两个圆心角相等,那么()A.这两个圆心角所对的弦相等;B.这两个圆心角所对的弧相等C.这两个圆心角所对的弦的弦心距相等;D.以上说法都不对2.下列语句中不正确的有()①相等的圆心角所对的弧相等②平分弦的直径垂直于弦③圆是轴对称图形,任何一条直径所在直线都是它的对称轴④长度相等的两条弧是等弧A.3个B.2个C.1个D.以上都不对3.在同圆或等圆中,下列说法错误的是()A.相等弦所对的弧相等B.相等弦所对的圆心角相等C.相等圆心角所对的弧相等D.相等圆心角所对的弦相等4、如图,在⊙O中,ABAC,∠B=70°,则∠A等于.5、如图,在⊙O中,若C是BD的中点,则图中与∠BAC相等的角有()A.1个B.2个C.3个D.4个6、如图,若AB是⊙O的直径,AB=10cm,∠CAB=30°,则BC=cm.7、如图,已知OA,OB均为⊙O上一点,若∠AOB=80°,则∠ACB=()CBAOC·BDOAA.80°B.70°C.60°D.40°8、圆内接四边形ABCD,∠A,∠B,∠C的度数之比为3:4:6,则∠D的度数为()A.60B.80C.100D.1209、已知如图,四边形ABCD内接于⊙O,若∠A=60°,则∠DCE=.题型一:利用圆心角圆周角定理求角度1、如图,AB是⊙O的直径,C,D是BE上的三等分点,∠AOE=60°,则∠COE是()A.40°B.60°C.80°D.120°2、如图,AB是⊙O的直径,BC⌒=BD⌒,∠A=25°,则∠BOD=.3、已知圆O的半径为5,弦AB的长为5,则弦AB所对的圆心角∠AOB=.4、在⊙O中,弦AB所对的劣弧为圆周的41,圆的半径等于12,则圆心角∠AOB=;弦AB的长为.5、如图,AB是⊙O的直径,点C在⊙O上,若∠A=40º,则∠B的度数为()A.80ºB.60ºC.50ºD.40º6、如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()OEDCBAODCBAA.50°B.60°C.70°D.80°7、如图,AB、CD是⊙O的两条弦,连接AD、BC,若∠BAD=60°,则∠BCD的度数为()A.40°B.50°C.60°D.70°8、如图,点A、B、C在⊙O上,∠AOC=60°,则∠ABC的度数是.9、如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=度.10、如图,⊙O的弦CD与直径AB相交,若∠BAD=50°,则∠ACD=..11、如图,AB是⊙O的直径,点C是圆上一点,∠BAC=70°,则∠OCB=.12、如图,在Rt△ABC中,∠C=90°,∠A=26°,以点C为圆心,BC为半径的圆分别交AB、AC于点D、点E,则弧BD的度数为()A.26°B.64°C.52°D.128°题型二:利用圆心角圆周角的性质定理求线段1、在⊙O中,圆心角∠AOB=90°,点O到弦AB的距离为4,则⊙O的直径的长为()A.4B.82C.24D.162、如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,OP=2,则⊙O的半径为()A.4B.6C.8D.123、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC=.题型三:利用弧、弦、圆心角、圆周角之间的关系证明弧相等,线段相等,角度相等1、如图,在⊙O中,AB=AC,∠ACB=60°,求证∠AOB=∠BOC=∠AOC.333EODCBAABCDO2.如图,在⊙O中,C、D是直径AB上两点,且AC=BD,MC⊥AB,ND⊥AB,M、N在⊙O上.(1)求证:AM=BN;(2)若C、D分别为OA、OB中点,则AMMNNB成立吗?3、如图,以⊙O的直径BC为一边作等边△ABC,AB、AC交⊙O于D、E,求证:BD=DE=EC4、如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC,AD,BD的长.5、如图,AB是⊙O的直径,C是BD的中点,CE⊥AB于E,BD交CE于点F.(1)求证:CF﹦BF;(2)若CD﹦6,AC﹦8,则⊙O的半径为,CE的长是.NMODCBA作业1、如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°2、圆中有两条等弦AB=AE,夹角∠A=88°,延长AE到C,使EC=BE,连接BC,如图.则∠ABC的度数是()A.90°B.80°C.69°D.65°3.如图所示⊙O中,已知∠BAC=∠CDA=20°,则∠ABO的度数为.ACBDEFO4.如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.5、如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.
本文标题:圆心角圆周角练习题
链接地址:https://www.777doc.com/doc-1237038 .html