您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 人教版数学九年级上册《第二十四章 圆》过关自测卷
第二十四章过关自测卷(100分,45分钟)一、选择题(每题4分,共32分)1.〈重庆〉如图1,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40°B.50°C.65°D.75°图1图22.〈甘肃兰州〉如图2是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cmB.4cmC.5cmD.6cm3.〈甘肃兰州〉圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为()A.3cmB.6cmC.9cmD.12cm图3图44.如图3,边长为a的六角螺帽在桌面上滚动(没有滑动)一周,则它的中心O点所经过的路径长为()A.6aB.5aC.2aπD.3aπ5.〈山东泰安〉如图4,已知AB是⊙O的直径,AD切⊙O于点A,点C是⌒EB的中点,则下列结论不成立的是()A.OC//AEB.EC=BCC.∠DAE=∠ABED.AC⊥OE6.〈2013,晋江市质检〉如图5,动点M,N分别在直线AB与CD上,且AB//CD,∠BMN与∠MND的平分线相交于点P,若以MN为直径作⊙O,则点P与⊙O的位置关系是()图5A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.以上都有可能7.△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是()A.120°B.125°C.135°D.150°8.〈贵州遵义〉如图6,将边长为1cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为()图6A.32πcmB.322πcmC.43πcmD.3cm二、填空题(每题4分,共24分)9.〈四川巴中〉如图7,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于________.图7图810.〈重庆〉如图8,一个圆心角为90°的扇形,半径OA=2,那么图中阴影部分的面积为________(结果保留π).11.〈贵州遵义〉如图9,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为________(结果保留根号).图9图1012.如图10,△ABC为等边三角形,AB=6,动点O在△ABC的边上从点A出发沿着A→C→B→A的路线匀速运动一周,速度为每秒1个单位长度,以O为圆心、3为半径的圆在运动过程中与△ABC的边第二次相切时是出发后第________秒.13.如图11,正六边形ABCDEF中,AB=2,P是ED的中点,连接AP,则AP的长为________.图11图1214.如图12,AB为半圆O的直径,C为半圆的三等分点,过B,C两点的半圆O的切线交于点P,若AB的长是2a,则PA的长是________.三、解答题(15题9分,16题10分,17题11分,18题14分,共44分)15.如图13所示,△ABC中,∠ACB=90°,AC=2cm,BC=4cm,CM是AB边上的中线,以C为圆心,以5cm长为半径画圆,则点A,B,M与⊙C的位置关系如何?图1316.如图14,已知CD是⊙O的直径,点A为CD延长线上一点,BC=AB,∠CAB=30°.(1)求证:AB是⊙O的切线;图14(2)若⊙O的半径为2,求⌒BD的长.17.如图15,从一个直径为4的圆形铁片中剪下一个圆心角为90°的扇形ABC.(1)求这个扇形的面积;图15(2)在剩下的材料中,能否从③中剪出一个圆作为底面,与扇形ABC围成一个圆锥?若不能,请说明理由;若能,请求出剪的圆的半径是多少.18.如图16,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与x轴相交于点A,与y轴相交于点B.(1)点P在运动时,线段AB的长度也在发生变化,请写出线段AB长度的最小值,并说明理由;图16(2)在⊙O上是否存在一点Q,使得以Q,O,A,P为顶点的四边形是平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由.参考答案及点拨一、1.C点拨:∵AB是⊙O的切线,B为切点,∴OB⊥AB,即∠OBA=90°,∵∠BAO=40°,∴∠O=50°,∵OB=OC,∴∠OCB=12(180°-∠O)=65°.故选C.2.C点拨:如答图1所示,过圆心O作OD⊥AB于点D,连接OA.答图1∵OD⊥AB,∴AD=12AB=12×8=4(cm).设OA=rcm,则OD=(r-2)cm,在Rt△AOD中,OA2=OD2+AD2,即r2=(r-2)2+42,解得r=5.故选C.3.B点拨:解答本题运用了方程思想.由题意得圆锥的底面周长是6πcm,设母线长是lcm,则lπ=6π,解得:l=6.故选B.4.C点拨:分析可知,六角螺帽在桌面上滚动(没有滑动)一周,它的中心O点所经过的路径长为60180aπ×6=2aπ.故选C.5.D点拨:A.∵点C是⌒EB的中点,∴OC⊥BE,∵AB为圆O的直径,∴AE⊥BE,∴OC∥AE,本选项正确;B.∵⌒EC=⌒BC,∴EC=BC,本选项正确;C.∵AD为圆O的切线,∴AD⊥OA,∴∠DAE+∠EAB=90°,∵∠ABE+∠EAB=90°,∴∠DAE=∠ABE,本选项正确;D.AC不一定垂直于OE,本选项错误.故选D.6.C点拨:∵AB∥CD,∴∠BMN+∠MND=180°,∵∠BMN与∠MND的平分线相交于点P,∴∠PMN=21∠BMN,∠PNM=21∠MND,∴∠PMN+∠PNM=90°.∴∠MPN=180°-(∠PMN+∠PNM)=180°-90°=90°.∴以MN为直径作⊙O时,OP=21MN=⊙O的半径,∴点P在⊙O上.故选C.7.C点拨:如答图2,连接IC.答图2∵CD为AB边上的高,∴∠ADC=90°,∴∠BAC+∠ACD=90°.∵I为△ACD的内切圆圆心,∴AI,CI分别是∠BAC和∠ACD的平分线,∴∠IAC+∠ICA=21(∠BAC+∠ACD)=21×90°=45°,∴∠AIC=135°.又∵AB=AC,∠BAI=∠CAI,AI=AI,∴△AIB≌△AIC,∴∠AIB=∠AIC=135°.故选C.8.C点拨:结合题图和已知条件,易知点B经过的路径长=2×ππ341801120(cm).故选C.二、9.32°点拨:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=58°,∴∠A=90°-∠ABD=32°,∴∠BCD=∠A=32°.10.π-2点拨:S扇形OAB=3604903602ππRn=π,S△AOB=21×2×2=2,则S阴影=S扇形OAB-S△AOB=π-2.11.ππ2点拨:解答本题运用了方程思想.∵图中两个阴影部分的面积相等,∴S扇形ADF=S△ABC,即360452AFπ=21·AC·BC,又∵AC=BC=1,∴AF2=π4,∴AF=ππ2.12.4点拨:如答图3所示,根据题意,作O′D⊥BC于D,则O′D=3.在Rt△O′CD中,∠C=60°,O′D=3,∴O′C=2,∴O′A=6-2=4.∴以O为圆心、3为半径的圆在运动过程中与△ABC的边第二次相切时是出发后第4秒.答图3答图413.13点拨:连接AE,如答图4,由题意易得AE=23,EP=1,∠AEP=90°.∴在Rt△AEP中,AP=22AEEP+=22132)(=13.14.7a点拨:连接OC,OP,如答图5所示.∵C为半圆的三等分点,答图5∴∠BOC=120°,已知PC,PB都是半圆O的切线,由切线长定理可得:∠POB=21∠BOC=60°.在Rt△POB中,OB=a,∠POB=60°,则PB=3a;在Rt△ABP中,由勾股定理得:AP=22BPAB=7)3()2(22aaa.三、15.解:∵CA=2cm<5cm,∴点A在⊙C内;∵BC=4cm>5cm,∴点B在⊙C外;在△ABC中,∠ACB=90°,∴由勾股定理,得AB=222224ACBC=25(cm).∵CM是AB边上的中线,∴CM=21AB=5cm,∴CM=⊙C的半径,∴点M在⊙C上.16.(1)证明:连接OB,如答图6所示:答图6∵BC=AB,∠CAB=30°,∴∠ACB=∠CAB=30°,又∵OC=OB,∴∠CBO=∠ACB=30°,∴∠AOB=∠CBO+∠ACB=60°.在△ABO中,∠CAB=30°,∠AOB=60°,可得∠ABO=90°,即AB⊥OB,∴AB是⊙O的切线.(2)解:∵OB=2,∠BOD=60°,∴⌒BD的长度l=32180260ππ.点拨:此题考查了切线的判定,等腰三角形的性质,三角形的外角性质以及弧长公式的运用.切线的判定方法有两种:有切点连半径,证明垂直;无切点作垂线,证明垂线段等于半径.17.解:(1)如答图7所示,连接BC.由∠BAC=90°得BC为⊙O的直径,∴BC=4.在Rt△ABC中,由勾股定理可得:AB=AC=22,∴S扇形ABC=36022902)(π=2π.答图7(2)不能.如答图7所示,连接AO并延长交⌒BC于点D,交⊙O于点E,则DE=4-22.而l⌒BC=18022902)(π=2π,设能与扇形ABC围成圆锥的底面圆的直径为d,则dπ=2π,∴d=2.又∵DE=4-22<d=2,即围成圆锥的底面圆的直径大于DE,∴不能围成圆锥.点拨:(1)由勾股定理求出扇形的半径,再根据扇形面积公式求值.(2)题需要求出③中最大圆的直径以及圆锥底面圆的直径(圆锥底面圆的周长即为弧BC的长),然后进行比较即可.18.解:(1)线段AB长度的最小值为4.理由如下:连接OP,如答图8所示.答图8∵AB切⊙O于P,∴OP⊥AB.取AB的中点C,则AB=2OC;当OC=OP时,OC最短,即AB最短,此时AB=4.(2)设存在符合条件的点Q.答图9如答图9,设四边形APOQ为平行四边形,∵∠APO=90°,∴四边形APOQ为矩形,又∵OP=OQ,∴四边形APOQ为正方形,∴OQ=QA,∠QOA=45°.在Rt△OQA中,根据OQ=2,∠AOQ=45°,得Q点坐标为(2,-2);如答图10,设四边形APQO为平行四边形,答图10∵OQ∥PA,∠APO=90°,∴∠POQ=90°,又∵OP=OQ,∴∠PQO=45°,∵PQ∥OA,∴PQ⊥y轴.设PQ⊥y轴于点H,在Rt△OHQ中,根据OQ=2,∠HQO=45°,得Q点坐标为(-2,2).∴符合条件的点Q的坐标为(-2,2)或(2,-2).方法规律:解答本题运用了分类讨论思想.(1)如答图8,设AB的中点为C,连接OP,由于AB是⊙O的切线,故△OPC是直角三角形,所以当OC与OP重合时,OC最短,即AB最短.(2)分两种情况:如答图9,当四边形APOQ是正方形时,△OPA,△OAQ都是等腰直角三角形,可求得点Q的坐标为(2,-2);如答图10,可求得∠QOP=∠OPA=90°,由于OP=OQ,故△OPQ是等腰直角三角形,可求得点Q的坐标为(-2,2).
本文标题:人教版数学九年级上册《第二十四章 圆》过关自测卷
链接地址:https://www.777doc.com/doc-12425211 .html