您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 【新高考复习】7 第7讲 二项分布及其应用 新题培优练
[基础题组练]1.小明同学喜欢打篮球,假设他每一次投篮投中的概率为23,则小明投篮四次,恰好两次投中的概率是()A.481B.881C.427D.827解析:选D.假设小明每一次投篮投中的概率为23,满足X~B4,23,投篮四次,恰好两次投中的概率P=C24232132=827.故选D.2.(2019·石家庄摸底考试)某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为()A.110B.15C.25D.12解析:选C.设“开关第一次闭合后出现红灯”为事件A,“开关第二次闭合后出现红灯”为事件B,则“开关两次闭合后都出现红灯”为事件AB,“开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯”为事件B|A,由题意得P(B|A)=P(AB)P(A)=25,故选C.3.在一个质地均匀的小正方体的六个面中,三个面标0,两个面标1,一个面标2,将这个小正方体连续掷两次,若向上的数字的乘积为偶数,则该乘积为非零偶数的概率为()A.14B.89C.116D.532解析:选D.两次数字乘积为偶数,可先考虑其反面——只需两次均出现1向上,故两次数字乘积为偶数的概率为1-262=89;若乘积非零且为偶数,需连续两次抛掷小正方体的情况为(1,2)或(2,1)或(2,2),概率为13×16×2+16×16=536.故所求条件概率为53689=532.4.(2019·广西三市第一次联考)某机械研究所对新研发的某批次机械元件进行寿命追踪调查,随机抽查的200个机械元件情况如下:使用时间/天10~2021~3031~4041~5051~60个数1040805020若以频率为概率,现从该批次机械元件中随机抽取3个,则至少有2个元件的使用寿命在30天以上的概率为()A.1316B.2764C.2532D.2732解析:选D.由表可知元件使用寿命在30天以上的概率为150200=34,则所求概率为C23342×14+343=2732.5.(2018·高考全国卷Ⅲ)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=()A.0.7B.0.6C.0.4D.0.3解析:选B.由题意知,该群体的10位成员使用移动支付的概率分布符合二项分布,所以DX=10p(1-p)=2.4,所以p=0.6或p=0.4.由P(X=4)<P(X=6),得C410p4(1-p)6<C610p6(1-p)4,即(1-p)2<p2,所以p>0.5,所以p=0.6.6.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且每次投篮是否投中相互独立,则该同学通过测试的概率为________.解析:该同学通过测试的概率P=C23×0.62×0.4+0.63=0.432+0.216=0.648.答案:0.6487.甲、乙两个小组各10名学生的英语口语测试成绩如下(单位:分).甲组:76,90,84,86,81,87,86,82,85,83乙组:82,84,85,89,79,80,91,89,79,74现从这20名学生中随机抽取一人,将“抽出的学生为甲组学生”记为事件A;“抽出的学生的英语口语测试成绩不低于85分”记为事件B,则P(AB),P(A|B)的值分别是________.解析:由题意知,P(AB)=1020×510=14,P(B)=5+420=920,根据条件概率的计算公式得P(A|B)=P(AB)P(B)=14920=59.答案:14,598.三支球队中,甲队胜乙队的概率为0.4,乙队胜丙队的概率为0.5,丙队胜甲队的概率为0.6,比赛顺序是:第一局是甲队对乙队,第二局是第一局的胜者对丙队,第三局是第二局的胜者对第一局的败者,第四局是第三局的胜者对第二局的败者,则乙队连胜四局的概率为________.解析:设乙队连胜四局为事件A,有下列情况:第一局中乙胜甲(A1),其概率为1-0.4=0.6;第二局中乙胜丙(A2),其概率为0.5;第三局中乙胜甲(A3),其概率为0.6;第四局中乙胜丙(A4),其概率为0.5,因各局比赛中的事件相互独立,故乙队连胜四局的概率为:P(A)=P(A1A2A3A4)=0.62×0.52=0.09.答案:0.099.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列;(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.解:(1)随机变量X的所有可能取值为0,1,2,3.P(X=0)=1-12×1-13×1-14=14,P(X=1)=12×1-13×1-14+1-12×13×1-14+1-12×1-13×14=1124,P(X=2)=1-12×13×14+12×1-13×14+12×13×1-14=14,P(X=3)=12×13×14=124.所以,随机变量X的分布列为X0123P14112414124(2)设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为P(Y+Z=1)=P(Y=0,Z=1)+P(Y=1,Z=0)=P(Y=0)P(Z=1)+P(Y=1)P(Z=0)=14×1124+1124×14=1148.所以,这2辆车共遇到1个红灯的概率为1148.10.(2019·河北“五个一名校联盟”模拟)空气质量指数(AirQualityIndex,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;300以上为严重污染.一环保人士记录了去年某地六月10天的AQI的茎叶图如图.(1)利用该样本估计该地六月空气质量为优良(AQI≤100)的天数;(2)将频率视为概率,从六月中随机抽取3天,记三天中空气质量为优良的天数为ξ,求ξ的分布列.解:(1)从茎叶图中可以发现样本中空气质量为优的天数为2,空气质量为良的天数为4,所以该样本中空气质量为优良的频率为610=35,从而估计该地六月空气质量为优良的天数为30×35=18.(2)由(1)估计某天空气质量为优良的概率为35,ξ的所有可能取值为0,1,2,3,且ξ~B3,35.所以P(ξ=0)=253=8125,P(ξ=1)=C13351252=36125,P(ξ=2)=C23352251=54125,P(ξ=3)=353=27125.ξ的分布列为ξ0123P8125361255412527125[综合题组练]1.箱子里有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第4次取球之后停止的概率为()A.C35C14C45B.593×49C.35×14D.C14×593×49解析:选B.由题意知,第四次取球后停止是当且仅当前三次取的球是黑球,第四次取的球是白球的情况,此事件发生的概率为593×49.2.已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为()A.310B.29C.78D.79解析:选D.设事件A为“第1次抽到的是螺口灯泡”,事件B为“第2次抽到的是卡口灯泡”,则P(A)=310,P(AB)=310×79=730.则所求概率为P(B|A)=P(AB)P(A)=730310=79.3.(2019·高考全国卷Ⅰ)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.解析:记事件M为甲队以4∶1获胜,则甲队共比赛五场,且第五场甲队获胜,前四场甲队胜三场负一场,所以P(M)=0.6×(0.62×0.52×2+0.6×0.4×0.52×2)=0.18.答案:0.184.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是________.(写出所有正确结论的序号)①P(B)=25;②P(B|A1)=511;③事件B与事件A1相互独立;④A1,A2,A3是两两互斥的事件;⑤P(B)的值不能确定,它与A1,A2,A3中哪一个发生都有关.解析:由题意知A1,A2,A3是两两互斥的事件,P(A1)=510=12,P(A2)=210=15,P(A3)=310,P(B|A1)=12×51112=511,P(B|A2)=411,P(B|A3)=411,而P(B)=P(A1B)+P(A2B)+P(A3B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=12×511+15×411+310×411=922.故正确的为②④.答案:②④5.甲、乙两人各射击一次,击中目标的概率分别是23和34.假设两人射击是否击中目标相互之间没有影响,每人每次射击是否击中目标相互之间也没有影响.(1)求甲射击4次,至少有1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设每人连续2次未击中目标,则终止其射击.问:乙恰好射击5次后,被终止射击的概率是多少?解:(1)记“甲连续射击4次,至少有1次未击中目标”为事件A1,则事件A1的对立事件A1-为“甲连续射击4次,全部击中目标”.由题意知,射击4次相当于做4次独立重复试验.故P(A1-)=C44234=1681.所以P(A1)=1-P(A1-)=1-1681=6581.所以甲连续射击4次,至少有一次未击中目标的概率为6581.(2)记“甲射击4次,恰好有2次击中目标”为事件A2,“乙射击4次,恰好有3次击中目标”为事件B2,则P(A2)=C24×232×1-232=827,P(B2)=C34343×1-341=2764.由于甲、乙射击相互独立,故P(A2B2)=P(A2)P(B2)=827×2764=18.所以两人各射击4次,甲恰有2次击中目标且乙恰有3次击中目标的概率为18.(3)记“乙恰好射击5次后,被终止射击”为事件A3,“乙第i次射击未击中“为事件Di(i=1,2,3,4,5),则A3=D5D4D3-(D2-D1-∪D2-D1∪D2D1-),且P(Di)=14.由于各事件相互独立,故P(A3)=P(D5)P(D4)P(D3-)P(D2-D1-+D2-D1+D2D1-)=14×14×34×34×34+34×14+14×34=451024.所以乙恰好射击5次后被终止射击的概率为451024.6.(2019·安徽宿州模拟)为了适当疏导电价矛盾,保障电力供应,支持可再生能源发展,促进节能减排,某省推出了省内居民阶梯电价的计算标准:以一个年度为计费周期、月度滚动使用,第一阶梯电量:年用电量2160度以下(含2160度),执行第一档电价0.5653元/度;第二阶梯电量:年用电量2161至4200度(含4200度),执行第二档电价0.6153元/度;第三阶梯电量:年用电量4200度以上,执行第三档
本文标题:【新高考复习】7 第7讲 二项分布及其应用 新题培优练
链接地址:https://www.777doc.com/doc-12778755 .html