您好,欢迎访问三七文档
专题十五《概率与分布列》讲义15.2条件概率与独立事件题型一.条件概率1.在一副扑克牌中任取一张,记事件A表示“抽到草花”,事件B表示“抽到草花的数字为“5”,则P(B|A)=()A.152B.113C.14D.5132.某同学从家到学校途经两个红绿灯,从家到学校预计走到第一个红绿灯路口遇到红灯的概率为0.75,两个红绿灯路口都遇到红灯的概率为0.60,则在第一个路口遇到红灯的前提下,第二个路口也遇到红灯的概率为()A.0.85B.0.80C.0.60D.0.563.从混有5张假钞的20张百元钞票中任意抽取两张,将其中一张放到验钞机上检验发现是假钞,则两张都是假钞的概率是()A.27B.17C.217D.4174.一个盒子里有7个红球,3个白球,从盒子里先取一个小球,然后不放回的再从盒子里取出一个小球,若已知第1个是红球的前提下,则第2个是白球的概率是()A.310B.13C.710D.235.一张储蓄卡的密码共有8位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率:(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.6.采购员要购买10个一包的电器元件.他的采购方法是:从一包中随机抽查3个,如这3个元件都是好的,他才买下这一包.假定含有4个次品的包数占30%,而其余包中各含有1个次品,求采购员拒绝购买的概率.7.已知A学校有15位数学老师,其中9位男老师,6位女老师,B学校有10位数学老师,其中3位男老师,7位女老师,为了实现师资均衡,现从A学校任意抽取一位数学老师到B学校,然后从B学校随机抽取一位数学老师到市里上公开课,则在B学校抽取到市里上公开课的是男老师的情况下,从A学校抽到B学校的老师也是男老师的概率是.题型二.独立事件1.甲罐中有5个红球,2个白球和3个黑球,乙罐中有6个红球,2个白球和2个黑球,先从甲罐中机取出一个球放入乙罐,分别以A1,A2,A3表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以B表示由乙罐取出的球是红球的事件,下列结论中不正确的是()A.事件B与事件A1不相互独立B.A1、A2、A3是两两互斥的事件C.P(B)=35D.P(B|A1)=7112.下列对各事件发生的概率判断正确的是()A.某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,那么该生在上学路上到第3个路口首次遇到红灯的概率为427B.三人独立地破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是彼此独立的,则此密码被破译的概率为25C.甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球,从每袋中各任取一个球,则取到同色球的概率为12D.设两个独立事件A和B都不发生的概率为19,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率是293.如图,用A、B、C三类不同的元件连接成两个系统N1、N2,当元件A、B、C都正常工作时,系统N1正常工作;当元件A正常工作且元件B、C至少有一个正常工作时,系统N2正常工作.系统N1,N2正常工作的概率分别为p1,p2,(Ⅰ)若元件A、B、C正常工作的概率依次为0.5,0.6,0.8,求p1,p2;(Ⅱ)若元件A、B、C正常工作的概率的概率都是p(0<p<1),求p1,p2,并比较p1,p2的大小关系.4.某人有4把钥匙,其中2把能打开门.现随机地取1把钥匙试着开门,不能开门的就扔掉,问第二次才能打开门的概率是.如果试过的钥匙不扔掉,这个概率又是.5.盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,再从盒中取出一个球,则此时取出黄色球的概率为()A.35B.79C.715D.31456.甲、乙两个不透明的袋中各有5个仅颜色不同的球,其中甲袋中有3个红球、2个白球,乙袋中有2个红球、3个白球,现从两袋中各随机取一球,则两球不同颜色的概率为()A.45B.925C.1225D.1325课后作业.条件概率与独立事件1.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传等四个项目,每人限报其中一项,记事件A为4名“同学所报项目各不相同”,事件B为“只有甲同学一人报关怀老人项目”,则P(B|A)=()A.14B.34C.29D.592.已知3件次品和2件正品混在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,则在第一次取出次品的条件下,第二次取出的也是次品的概率是()A.310B.35C.12D.163.某个游戏中,一个珠子按如图所示的通道,由上至下的滑下,从最下面的六个出口出来,规定猜中者为胜,如果某人在该游戏中,猜得珠子从3号口出来,那么他取胜的概率为.4.甲乙两人组队参加猜谜语大赛,比赛共两轮,每轮比赛甲乙两人各猜一个谜语,已知甲猜对每个谜语的概率为34,乙猜对每个谜语的概率为23,甲、乙在猜谜语这件事上互不影响,则比赛结束时,甲乙两人合起来共猜对三个谜语的概率为.5.某保险公司把被保险人分为3类:“谨慎的”“一般的”“冒失的”.统计资料表明,这3类人在一年内发生事故的概率依次为0.05,0.15和0.30.如果“谨慎的”被保险人占20%,“一般的”被保险人占50%,“冒失的”被保险人占30%,则一个被保险人在一年内出事故的概率是()A.0.175B.0.085C.0.125D.0.2256.某地市场调查发现,35的人喜欢在网上购买家用小电器,其余的人则喜欢在实体店购买家用小电器.经该地市场监管局抽样调查发现,在网上购买的家用小电器的合格率为34,而在实体店购买的家用小电器的合格率为910.现该地市场监管局接到一个关于家用小电器不合格的投诉电话,则这台被投诉的家用小电器是在网上购买的概率是()A.320B.1115C.1519D.34
本文标题:【新高考复习】专题15概率与分布列 15.2条件概率与独立事件 题型归纳讲义-2022届高三数学一轮
链接地址:https://www.777doc.com/doc-12780724 .html