您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 【新高考复习】专题13 数列的性质必刷小题100题(原卷版)
专题13数列的性质必刷小题100题任务一:善良模式(基础)1-30题一、单选题1.已知nS为等差数列na的前n项和,且满足24422aS,,则8S()A.70B.82C.92D.1052.已知na为等比数列,nS是它的前n项和.若2312aaa,且4a与72a的等差中项为54,则5S()A.29B.31C.33D.353.已知数列na的通项公式是132nnan,则122019aaa()A.3028B.3027C.3027D.30284.在等比数列na中,已知1234566332aaaaaa,34132aa,则123456111111aaaaaa()A.63B.3116C.2D.6310245.记nS为正项等比数列na的前n项和,若314S,12a,则2514aaaa的值为()A.2B.12C.3D.136.等差数列{an}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{an}前6项的和为()A.-24B.-3C.3D.87.已知数列na的前n项和为nS,且na满足122nnnaaa,532aa,若22S,则9a()A.9B.172C.10D.1928.若nS为数列na的前n项和,且22nnSa,则na等于()A.2nB.2nC.12nD.12n9.在公差大于0的等差数列na中,71321aa,且1a,31a,65a成等比数列,则数列11nna的前21项和为()A.12B.21C.11D.3110.在等差数列{}na中,5321aa,8262aa,则1210aaa()A.165B.160C.155D.14511.记等比数列na的前n项和为nS,若482,8,SS则12S()A.14B.18C.26D.3212.已知nS为等比数列na的前n项和,410S,1270S,则8S().A.30B.20C.30D.30或2013.已知数列na为等差数列,其前n项和为nS,3965aaa,则11S()A.110B.55C.50D.4514.数列na中的前n项和22nnS,数列2logna的前n项和为nT,则20T().A.190B.192C.180D.18215.已知数列na的前n项积为nT,且满足111nnnaanaN,若114a,则18T为().A.4B.35-C.53D.51216.在等比数列na中,公比为12,前6项的和为1894,则6a()A.738B.34C.38D.24二、多选题17.已知数列na的前n项和为nS,下列说法正确的是()A.若点,nna在函数(,ykxbkb为常数)的图象上,则na为等差数列B.若na为等差数列,则3na为等比数列C.若na为等差数列,10a,110S,则当10n时,nS最大D.若23nnS,则na为等比数列18.已知等差数列na的前n项和为nS,若10a且20210S,则下列说法正确的有()A.10100aB.10110.aC.120200aaD.220210.aa19.数列{an}的前n项和为Sn,*111,2NnnaaSn,则有()A.Sn=3n-1B.{Sn}为等比数列C.an=2·3n-1D.21,123,2nnnan20.记等差数列na的前n项和为nS,已知53a,39S,则有()A.15aB.40aC.60SD.34SS21.已知Sn为等差数列{an}的前n项和,a3+S5=-18,a6=-a3,则()A.an=2n-9B.an=2n-7C.Sn=n2-8nD.Sn=n2-6n22.设等比数列na的各项都为正数,其前n项和为nS,已知7652aaa,且存在两项,mnaa,使得14mnaaa,则下列结论正确的是()A.12nnaaB.11nnSaaC.6mnD.8mn23.设nS是数列na的前n项和,11a,110nnnaSS,则下列说法正确的有()A.数列na的前n项和为1nSnB.数列1nS为递增数列C.数列na的通项公式为11nannD.数列na的最大项为1a第II卷(非选择题)三、填空题24.已知等比数列na满足1135121aaaa,,则357aaa_________.25.已知数列{}na的各项均为正数,其前n项和为nS,且满足221nnnaaS,则满足110na的最大的正整数n等于_________.26.已知数列na的首项11a,满足11()()2nnnaanN,则2018a__________.27.九连环是中国的一种古老智力游戏,它用九个圆环相连成串,环环相扣,以解开为胜,趣味无穷.中国的末代皇帝溥仪19061967也曾有一个精美的由九个翡翠缳相连的银制的九连环(如图).现假设有n个圆环,用na表示按照某种规则解下n个圆环所需的银和翠玉制九连环最少移动次数,且数列na满足11a,22a,1223,nnnnaanN,则10a_______.28.已知nS为数列na的前n项和,数列nSn是等差数列,若212aa,12468S,则1a___________.29.正项等差数列na的前n和为nS,已知2375150aaa,则9S=__________.30.已知等差数列na的前n项和为nS,且151316,260aaS,则2020201720202017SS________________.任务二:中立模式(中档)1-40题一、单选题1.设数列na满足11232424nnnaaaa,则数列na的前n项和nS为()A.111122nB.1112nC.11122nD.112n2.已知等差数列na且26610143224aaaaa,则数列na的前13项之和为()A.26B.39C.104D.523.已知公比不等于1的等比数列na的前n项乘积为nT,若22286aaa,则()A.57TTB.36TTC.47TTD.39TT4.设数列na和nb的前n项和分别为nS,nT,已知数列nb的等差数列,且2nnnanba,33a,4511bb,则nnST()A.22nnB.22nnC.22nnD.22nn5.数列na的前n项和为nS,若122aa,11nnaS,则()A.数列na是公比为2的等比数列B.648SC.nnaS既无最大值也无最小值D.12111103naaa6.已知数列na满足:11a,12nnnaaa()nN,则6a()A.131B.132C.163D.1647.已知数列na满足24a,1111nnnnnanana(1n且nN),数列na的前n项和为Sn,则()A.21202080SaB.21202040SaC.21202080SaD.21202040Sa8.已知等差数列na的前n项和为nS,且611S,917S,则15S()A.15B.23C.28D.309.已知数列na满足11a,且121nnnaaa,*nN,则()A.5011,1211aB.5011,1110aC.5011,109aD.5011,98a10.已知数列na满足11113nnnnaaaa,152a,设224nnnacn,若数列nc是单调递减数列,则实数的取值范围是()A.1,6B.1,3C.1,2D.1,11.在数列na中,25nann,则12232425aaaaaa()A.25B.32C.62D.7212.已知数列na满足111nnaa,若112a,则100a=()A.-1B.12C.1D.213.记首项为1的数列na的前n项和为nS,且2n时,2212nnnaSS,则10S的值为()A.110B.113C.116D.11914.设nS为数列na的前n项和,112322nnnaan,且1232aa.记nT为数列1nnaS的前n项和,若对任意*nN,nTm,则m的最小值为()A.3B.13C.2D.1215.设等比数列na的公比为q,前n项和为nS.若1q,2152mmmaaa,且29mmSS,*mN,则m的值为()A.2B.3C.4D.516.设数列na的前n项和为nS,已知22a,12(1)1nnnaa,则60S()A.510B.511C.512D.51417.设等差数列na的前n项和为nS,数列nb的前n和为nT,已知51011 11,120,nnnaSbaa,若17kT,则正整数k的值为()A.9B.8C.7D.618.已知数列na满足1221nnaann,15a,若na前n项之和为nS,则满足不等式2021nS的最小整数n是()A.60B.62C.63D.6519.已知函数fxx的图像过点4,2,且11nafnfn,*nN.记数列na的前2021项和为()A.20191B.20201C.20211D.2022120.已知数列na的前n项和为nS,且满足*112,2242),(nnaanannN,数列nb的通项nnSbn,则使得22212111nkbbb恒成立的最小的k值最接近()A.12B.710C.34D.1二、多选题21.已知等差数列na的前n项和为nS,公差0d,11110S,7a是3a与9a的等比中项,则下列选项正确的是()A.123920aaaB.2dC.nS有最大值D.当0nS时,n的最大值为2122.等差数列na的前n项和为nS,公差为d,74840SSSS,则下列结论正确的是()A.若0d,则120SB.若0d,则5S最小C.67aaD.2658aaa23.已知数列{an}满足a1=1,nan+1﹣(n+1)an=1,n∈N*,其前n项和为Sn,则下列选项中正确的是()A.数列{an}是公差为2的等差数列B.满足Sn<100的n的最大值是9C.Sn除以4的余数只能为0或1D.2Sn=nan24.等差数列na与nb的前n项和分别为nS与nT,且2835nnSnTn,则()A.3832aabB.当22nSn时,62nbnC.41142aabD.*xN,0nT25.已知等比数列na的前n项和为nS,且214Sa,2a是11a与312a的等差中项,数列nb满足1nnnnabSS,数列nb的前n项和为nT,则下列命题正确的是()A.数列na的通项公式为13nnaB.31nnSC.数列nb的通项公式为1233131nnnnbD.nT的取值范围是11,8626.已知等差数列{}na的前n项和为nS,且满足20220a,202120220aa,则()A.数列{}na是递增数列B.数列{}nS是递增数列C.nS的最小值是2021SD.使得nS取得最小正数的4042n27.已知na为等差数列,
本文标题:【新高考复习】专题13 数列的性质必刷小题100题(原卷版)
链接地址:https://www.777doc.com/doc-12788130 .html