您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 【新高考复习】第8讲 函数与方程、函数的应用
第8讲函数与方程、函数的应用一、选择题1.(2017·赣中南五校联考)函数f(x)=3x-x2的零点所在区间是()A.(0,1)B.(1,2)C.(-2,-1)D.(-1,0)解析由于f(-1)=-230,f(0)=30-0=10,∴f(-1)·f(0)0.则f(x)在(-1,0)内有零点.答案D2.已知函数f(x)=2x-1,x≤1,1+log2x,x1,则函数f(x)的零点为()A.12,0B.-2,0C.12D.0解析当x≤1时,由f(x)=2x-1=0,解得x=0;当x1时,由f(x)=1+log2x=0,解得x=12,又因为x1,所以此时方程无解.综上函数f(x)的零点只有0.答案D3.函数f(x)=2x-2x-a的一个零点在区间(1,2)内,则实数a的取值范围是()A.(1,3)B.(1,2)C.(0,3)D.(0,2)解析因为函数f(x)=2x-2x-a在区间(1,2)上单调递增,又函数f(x)=2x-2x-a的一个零点在区间(1,2)内,则有f(1)·f(2)0,所以(-a)(4-1-a)0,即a(a-3)0,所以0a3.答案C4.(2017·德阳一诊)将甲桶中的aL水缓慢注入空桶乙中,tmin后甲桶中剩余的水量符合指数衰减曲线y=aent.假设过5min后甲桶和乙桶的水量相等,若再过mmin甲桶中的水只有a4L,则m的值为()A.5B.8C.9D.10解析∵5min后甲桶和乙桶的水量相等,∴函数y=f(t)=aent满足f(5)=ae5n=12a,可得n=15ln12,∴f(t)=a·12t5,因此,当kmin后甲桶中的水只有a4L时,f(k)=a·12k5=14a,即12k5=14,∴k=10,由题可知m=k-5=5.答案A5.(2017·湖北七校联考)已知f(x)是奇函数且是R上的单调函数,若函数y=f(2x2+1)+f(λ-x)只有一个零点,则实数λ的值是()A.14B.18C.-78D.-38解析令y=f(2x2+1)+f(λ-x)=0,则f(2x2+1)=-f(λ-x)=f(x-λ),因为f(x)是R上的单调函数,所以2x2+1=x-λ,只有一个实根,即2x2-x+1+λ=0只有一个实根,则Δ=1-8(1+λ)=0,解得λ=-78.答案C二、填空题6.(2016·浙江卷)设函数f(x)=x3+3x2+1,已知a≠0,且f(x)-f(a)=(x-b)(x-a)2,x∈R,则实数a=________,b=________.解析∵f(x)=x3+3x2+1,则f(a)=a3+3a2+1,∴f(x)-f(a)=(x-b)(x-a)2=(x-b)(x2-2ax+a2)=x3-(2a+b)x2+(a2+2ab)x-a2b=x3+3x2-a3-3a2.由此可得2a+b=-3,①a2+2ab=0,②a3+3a2=a2b.③∵a≠0,∴由②得a=-2b,代入①式得b=1,a=-2.答案-217.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求(已知lg2≈0.3010,lg3≈0.4771).解析设过滤n次才能达到市场要求,则2%1-13n≤0.1%,即23n≤120,所以nlg23≤-1-lg2,所以n≥7.39,所以n=8.答案88.(2015·安徽卷)在平面直角坐标系xOy中,若直线y=2a与函数y=|x-a|-1的图象只有一个交点,则a的值为________.解析函数y=|x-a|-1的图象如图所示,因为直线y=2a与函数y=|x-a|-1的图象只有一个交点,故2a=-1,解得a=-12.答案-12三、解答题9.已知二次函数f(x)=x2+(2a-1)x+1-2a,(1)判断命题:“对于任意的a∈R,方程f(x)=1必有实数根”的真假,并写出判断过程;(2)若y=f(x)在区间(-1,0)及0,12内各有一个零点,求实数a的取值范围.解(1)“对于任意的a∈R,方程f(x)=1必有实数根”是真命题.依题意,f(x)=1有实根,即x2+(2a-1)x-2a=0有实根,因为Δ=(2a-1)2+8a=(2a+1)2≥0对于任意的a∈R恒成立,即x2+(2a-1)x-2a=0必有实根,从而f(x)=1必有实根.(2)依题意,要使y=f(x)在区间(-1,0)及0,12内各有一个零点,只需f(-1)0,f(0)0,f120,即3-4a0,1-2a0,34-a0,解得12a34.故实数a的取值范围为a12a34.10.(2017·山东实验中学月考)候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q之间的关系为v=a+blog3Q10(其中a、b是实数).据统计,该种鸟类在静止时其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.(1)求出a、b的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s,则其耗氧量至少要多少个单位?解(1)由题意可知,当这种鸟类静止时,它的速度为0m/s,此时耗氧量为30个单位,故有a+blog33010=0,即a+b=0;当耗氧量为90个单位时,速度为1m/s,故有a+blog39010=1,整理得a+2b=1.解方程组a+b=0,a+2b=1,得a=-1,b=1.(2)由(1)知,v=-1+log3Q10.所以要使飞行速度不低于2m/s,则有v≥2,即-1+log3Q10≥2,即log3Q10≥3,解得Q≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2m/s,则其耗氧量至少要270个单位.11.已知函数f(x)=0,x≤0,ex,x0,则使函数g(x)=f(x)+x-m有零点的实数m的取值范围是()A.[0,1)B.(-∞,1)C.(-∞,1]∪(2,+∞)D.(-∞,0]∪(1,+∞)解析函数g(x)=f(x)+x-m的零点就是方程f(x)+x=m的根,画出h(x)=f(x)+x=x,x≤0,ex+x,x0的大致图象(图略).观察它与直线y=m的交点,得知当m≤0或m1时,有交点,即函数g(x)=f(x)+x-m有零点.答案D12.(2017·石家庄质检)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图3记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为()A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟解析根据图表,把(t,p)的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式,联立方程组得0.7=9a+3b+c,0.8=16a+4b+c,0.5=25a+5b+c,消去c化简得7a+b=0.1,9a+b=-0.3,解得a=-0.2,b=1.5,c=-2.所以p=-0.2t2+1.5t-2=-15t2-152t+22516+4516-2=-15t-1542+1316,所以当t=154=3.75时,p取得最大值,即最佳加工时间为3.75分钟.答案B13.(2015·湖南卷)若函数f(x)=|2x-2|-b有两个零点,则实数b的取值范围是________.解析由f(x)=|2x-2|-b=0,得|2x-2|=b.在同一平面直角坐标系中画出y=|2x-2|与y=b的图象,如图所示.则当0b2时,两函数图象有两个交点,从而函数f(x)=|2x-2|-b有两个零点.答案(0,2)14.设函数f(x)=1-1x(x0).(1)作出函数f(x)的图象;(2)当0ab,且f(a)=f(b)时,求1a+1b的值;(3)若方程f(x)=m有两个不相等的正根,求m的取值范围.解(1)如图所示.(2)∵f(x)=1-1x=1x-1,x∈(0,1],1-1x,x∈(1,+∞),故f(x)在(0,1]上是减函数,而在(1,+∞)上是增函数.由0ab且f(a)=f(b),得0a1b,且1a-1=1-1b,∴1a+1b=2.(3)由函数f(x)的图象可知,当0m1时,函数f(x)的图象与直线y=m有两个不同的交点,即方程f(x)=m有两个不相等的正根.
本文标题:【新高考复习】第8讲 函数与方程、函数的应用
链接地址:https://www.777doc.com/doc-12788829 .html