您好,欢迎访问三七文档
专题六《导数》讲义6.4导数与函数的零点知识梳理.函数的零点1.判断、证明或讨论函数零点个数的方法:利用零点存在性定理的条件为函数图象在区间[a,b]上是连续不断的曲线,且f(a)·f(b)0.①直接法:判断一个零点时,若函数为单调函数,则只需取值证明f(a)·f(b)0;②分类讨论法:判断几个零点时,需要先结合单调性,确定分类讨论的标准,再利用零点存在性定理,在每个单调区间内取值证明f(a)·f(b)0.2.已知函数有零点求参数范围常用的方法:(1)分离参数法:一般命题情境为给出区间,求满足函数零点个数的参数范围,通常解法为从f(x)中分离出参数,然后利用求导的方法求出由参数构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分类讨论法:一般命题情境为没有固定区间,求满足函数零点个数的参数范围,通常解法为结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围.题型一.讨论零点个数1.函数f(x)=13x3+2x2+3x+43的零点个数为.2.设函数f(x)=13x﹣lnx(x>0),则y=f(x)()A.在区间(1𝑒,1),(1,e)内均有零点B.在区间(1𝑒,1),(1,e)内均无零点C.在区间(1𝑒,1)内有零点,在区间(1,e)内无零点D.在区间(1𝑒,1),内无零点,在区间(1,e)内有零点3.已知定义在R上的奇函数f(x),满足当x>0时f(x)=12x2﹣xlnx,则关于x的方程f(x)=a满足()A.对任意a∈R,恰有一解B.对任意a∈R,恰有两个不同解C.存在a∈R,有三个不同解D.存在a∈R,无解题型二.已知零点求参考点1.参变分离1.已知函数f(x)=(x2﹣4x+1)ex﹣a恰有三个零点,则实数a的取值范围为()A.(﹣2e3,0)B.(−6𝑒,0)C.(−6𝑒,2e3)D.(0,6𝑒)2.已知函数𝑓(𝑥)=3𝑥+4𝑙𝑛𝑥−𝑥−𝑎在区间(0,2)上至少有一个零点,则实数a的取值范围是()A.(0,2)B.[2,4ln3﹣2)C.(2,4𝑙𝑛2−12)D.[2,+∞)考点2.转化成两个函数的交点问题3.已知函数f(x)=12ax2+cosx﹣1(a∈R),若函数f(x)有唯一零点,则a的取值范围为()A.(﹣∞,0)B.(﹣∞,0)∪[1,+∞)C.(﹣∞,0]∪[1,+∞)D.(﹣∞,﹣1]∪[1,+∞)4.已知函数f(x)=e2x﹣ax2+bx﹣1,其中a,b∈R,e为自然对数的底数,若f(1)=0,f′(x)是f(x)的导函数,函数f′(x)在区间(0,1)内有两个零点,则a的取值范围是()A.(e2﹣3,e2+1)B.(e2﹣3,+∞)C.(﹣∞,2e2+2)D.(2e2﹣6,2e2+2)考点3.讨论参数——单调性+极值、最值5.若函数f(x)=ex(x3﹣3ax﹣a)有3个零点,则实数a的取值范围是()A.(0,12)B.(12,+∞)C.(0,14)D.(14,+∞)6.已知函数f(x)=2e2x﹣2ax+a﹣2e﹣1,其中a∈R,e为自然对数的底数.若函数f(x)在区间(0,1)内有两个零点,则a的取值范围是()A.(2,2e﹣1)B.(2,2e2)C.(2e2﹣2e﹣1,2e2)D.(2e﹣1,2e2﹣2e﹣1)7.(2020·全国1)已知函数f(x)=ex﹣a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.题型三.隐零点问题——设而不求,虚设零点1.已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0.则a的取值范围是.2.若函数f(x)=x2+2𝑥−alnx(a>0)有唯一零点x0,且m<x0<n(m,n为相邻整数),则m+n的值为()A.1B.3C.5D.73.已知函数f(x)=lnx+1𝑎𝑥(a∈R且a≠0).(1)讨论函数f(x)的单调性;(2)当a=2时,若关于x的方程f(x)=m有两个实数根x1,x2,且x1<x2,求证:x1+x2>1.课后作业.零点1.已知函数f(x)=(x2+a)ex有最小值,则函数y=f'(x)的零点个数为()A.0.B.1C.2D.不确定2.若函数f(x)=𝑥33−x2﹣3x﹣m在区间[﹣2,6]有三个不同的零点,则实数m的取值范围是()A.(﹣9,18)B.[−23,53)C.(﹣9,53)D.[−23,18)3.设函数f(x)=(x﹣1)ex,若关于x的不等式f(x)<ax﹣1有且仅有两个整数解,则实数a的取值范围是()A.(﹣1,e2]B.(1,𝑒22]C.(1,𝑒2+12]D.(𝑒2+12,2𝑒3+13]4.函数f(x)=aex+2x在R上有两个零点x1,x2,且𝑥2𝑥1≥2,则实数a的最小值为()A.−𝑙𝑛22B.﹣ln2C.−2𝑒D.ln25.已知函数f(x)=ex﹣ax2.(1)若𝑎=12,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a的值.6.(2019·全国1)已知函数f(x)=sinx﹣ln(1+x),f′(x)为f(x)的导数.证明:(1)f′(x)在区间(﹣1,𝜋2)存在唯一极大值点;(2)f(x)有且仅有2个零点.
本文标题:【新高考复习】专题06 导数 6.4导数与函数的零点 题型归纳讲义-2022届高三数学一轮复习(原卷
链接地址:https://www.777doc.com/doc-12789458 .html