您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 专题3 第2讲 数列求和及其综合应用 (65)
第2讲数列求和及其综合应用[考情分析]1.数列求和重点考查分组转化、错位相减、裂项相消三种求和方法.2.数列的综合问题,一般以等差数列、等比数列为背景,与函数、不等式相结合,考查最值、范围以及证明不等式等.3.主要以选择题、填空题及解答题的形式出现,难度中等.考点一数列求和核心提炼1.裂项相消法就是把数列的每一项分解,使得相加后项与项之间能够相互抵消,但在抵消的过程中,有的是相邻项抵消,有的是间隔项抵消.常见的裂项方式有:1nn+k=1k1n-1n+k;14n2-1=1212n-1-12n+1.2.错位相减法求和,主要用于求{anbn}的前n项和,其中{an},{bn}分别为等差数列和等比数列.考向1分组转化法例1(2022·德州联考)已知数列{2an}是公比为4的等比数列,且满足a2,a4,a7成等比数列,Sn为数列{bn}的前n项和,且bn是1和Sn的等差中项,若cn=an,n为奇数,bn,n为偶数,求数列{cn}的前2n-1项和.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________考向2裂项相消法例2(2022·新高考全国Ⅰ)记Sn为数列{an}的前n项和,已知a1=1,Snan是公差为13的等差数列.(1)求{an}的通项公式;(2)证明:1a1+1a2+…+1an2.________________________________________________________________________________________________________________________________________________________________________________________________________________________考向3错位相减法例3(2022·上饶模拟)从①b5-b4=18b2,②S5=b4-2,③log3bn+1-1=log3bn这三个条件中任选一个,补充在下面问题中,并解答.已知数列{an}的前n项和为Sn,数列{bn}是正项等比数列,且2an=an+1+an-1(n≥2),S3=b3=9,b4=a14,________.(1)求数列{an}和{bn}的通项公式;(2)若cn=anbn,求数列{cn}的前n项和Tn.注:如果选择多个条件分别解答,按第一个解答计分.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________规律方法(1)分组转化法求和的关键是将数列通项转化为若干个可求和的数列通项的和或差.(2)裂项相消法的基本思路是将通项拆分,可以产生相互抵消的项.(3)用错位相减法求和时,应注意:①等比数列的公比为负数的情形;②在写出“Sn”和“qSn”的表达式时应特别注意将两式“错项对齐”,以便准确写出“Sn-qSn”的表达式.跟踪演练1(1)(2022·湛江模拟)已知数列{an}是等比数列,且8a3=a6,a2+a5=36.①求数列{an}的通项公式;②设bn=anan+1an+1+1,求数列{bn}的前n项和Tn,并证明:Tn13.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)(2022·南通调研)已知正项等比数列{an}的前n项和为Sn,满足a2=2,an+3-Sn+2=an+1-Sn.①求数列{an}的通项公式;②记bn=2n-1an,数列{bn}的前n项和为Tn,求使不等式Tn132-4n+72n成立的n的最小值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________考点二数列的综合问题核心提炼数列与函数、不等式的综合问题是高考命题的一个方向,此类问题突破的关键在于通过函数关系寻找数列的递推关系,求出数列的通项或前n项和,再利用数列或数列对应的函数解决最值、范围问题,通过放缩进行不等式的证明.例4(1)已知A(0,0),B(5,0),C(1,3),连接△ABC的各边中点得到△A1B1C1,连接△A1B1C1的各边中点得到△A2B2C2,如此无限继续下去,得到一系列三角形:△ABC,△A1B1C1,△A2B2C2,…,则这一系列三角形的面积之和无限趋近于常数()A.103B.5C.10D.15(2)在各项均为正数的数列{an}中,a1=1,a2n+1-2an+1an-3a2n=0,Sn是数列{an}的前n项和,若对n∈N*,不等式an(λ-2Sn)≤27恒成立,则实数λ的取值范围为__________.易错提醒求解数列与函数交汇问题要注意两点(1)数列是一类特殊的函数,其定义域是正整数集(或它的有限子集),在求数列最值或不等关系时要特别注意.(2)解题时准确构造函数,利用函数性质时注意限制条件.跟踪演练2(1)我国古代数学典籍《九章算术》第七章“盈不足”中有一道两鼠穿墙问题:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠日一尺,大鼠日自倍,小鼠日自半,问何日相逢”,翻译过来就是:有五尺厚的墙,两只老鼠从墙的两边相对打洞穿墙,大、小鼠第一天都进一尺,以后每天,大鼠加倍,小鼠减半,则几天后两鼠相遇,这个问题体现了古代对数列问题的研究,现将墙的厚度改为1200尺,则需要几天时间才能打穿(结果取整数)()A.12B.11C.10D.9(2)(2022·潍坊检测)如图,在边长为a的等边△ABC中,圆D1与△ABC相切,圆D2与圆D1相切且与AB,AC相切,…,圆Dn+1与圆Dn相切且与AB,AC相切,依次得到圆D3,D4,…,Dn.设圆D1,D2,…,Dn的面积之和为Xn(n∈N*),则Xn等于()A.112πa219n-1B.332πa21-19nC.18πa21-13nD.112πa219n-1-13n-1+1
本文标题:专题3 第2讲 数列求和及其综合应用 (65)
链接地址:https://www.777doc.com/doc-12794788 .html