您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 第7章 必刷小题13 立体几何
一、单项选择题1.如图,用斜二测画法作水平放置的正三角形A1B1C1的直观图,则正确的图形是()2.下列四个命题中,正确的是()A.各侧面都是全等四边形的棱柱一定是正棱柱B.对角面是全等矩形的六面体一定是长方体C.有两侧面垂直于底面的棱柱一定是直棱柱D.长方体一定是直四棱柱3.从平面外一点P引与平面相交的直线,使P点与交点的距离等于1,则满足条件的直线可能有()A.0条或1条B.0条或无数条C.1条或2条D.0条或1条或无数条4.已知m,n表示两条不同的直线,α,β表示两个不同的平面,则下列命题中正确的是()A.若m∥α,n⊥β,m∥n,则α⊥βB.若m⊥n,m⊥α,n∥β,则α∥βC.若α⊥β,m⊥α,m⊥n,则n∥βD.若α⊥β,α∩β=m,n⊥m,则n⊥β5.已知直线a,b,l和平面α,β,a⊂α,b⊂β,α∩β=l,且α⊥β.对于以下命题,判断正确的是()①若a,b异面,则a,b至少有一个与l相交;②若a,b垂直,则a,b至少有一个与l垂直.A.①是真命题,②是假命题B.①是假命题,②是真命题C.①是假命题,②是假命题D.①是真命题,②是真命题6.(2023·徐州模拟)圆柱形玻璃杯中盛有高度为10cm的水,若放入一个玻璃球(球的半径与圆柱形玻璃杯内壁的底面半径相同)后,水恰好淹没了玻璃球,则玻璃球的半径为()A.203cmB.15cmC.103cmD.20cm7.蹴鞠,又名蹴球,踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴、蹋、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录.已知某鞠的表面上有五个点P,A,B,C,D恰好构成一正四棱锥P-ABCD,若该棱锥的高为8,底面边长为42,则该鞠的表面积为()A.64πB.100πC.132πD.144π8.某同学画“切面圆柱体”(用与圆柱底面不平行的平面切圆柱,底面与切面之间的部分叫做切面圆柱体),发现切面与圆柱侧面的交线是一个椭圆(如图所示).若该同学所画的椭圆的离心率为12,则“切面”所在平面与底面所成的角为()A.π12B.π6C.π4D.π39.(2023·安庆模拟)已知球O的半径为R,A,B,C三点在球O的球面上,球心O到平面ABC的距离为32R,AB=AC=3,∠BAC=120°,则球O的表面积为()A.48πB.16πC.323πD.643π10.(2022·北京模拟)在通用技术教室里有一个三棱锥木块如图所示,VA,VB,VC两两垂直,VA=VB=VC=1(单位:dm),小明同学计划通过侧面VAC内任意一点P将木块锯开,使截面平行于直线VB和AC,则该截面面积(单位:dm2)的最大值是()A.14dm2B.24dm2C.34dm2D.34dm2二、多项选择题11.如图所示,在正方体ABCD-A1B1C1D1中,E是平面ADD1A1的中心,M,N,F分别是B1C1,CC1,AB的中点,则下列说法正确的是()A.MN=12EFB.MN≠12EFC.MN与EF异面D.MN与EF平行12.(2023·忻州模拟)如图,已知在边长为6的菱形ABCD中,∠BAD=60°,点E,F分别是线段AD,BC上的点.且AE=BF=2.将四边形ABFE沿EF翻折,当折起后得到的几何体AED-BFC的体积最大时,给出下列说法,其中正确的说法有()A.AD⊥EFB.BC∥平面ADEC.平面DEFC⊥平面ABFED.平面ADE⊥平面ABFE三、填空题13.(2023·榆林模拟)在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,且PA=AB,AD=3AB,则tan∠APC=________.14.(2022·安庆模拟)如图,在三棱锥P-ABC中,点O为AB的中点,点P在平面ABC内的射影恰为OB的中点E,已知AB=2PO=2,点C到OP的距离为3,则当∠ACB最大时,直线PC与平面PAB所成角的大小为________.15.如图所示,在长方体ABCD-A1B1C1D1中,AB=3,AD=4,AA1=5,点E是棱CC1上的一个动点,若平面BED1交棱AA1于点F,则四棱锥B1-BED1F的体积为________,截面四边形BED1F的周长的最小值为________.16.(2023·北京模拟)如图,正方体ABCD-A1B1C1D1的棱长为2,点O为底面ABCD的中心,点P在侧面BB1C1C的边界及其内部运动.给出下列四个结论:①D1O⊥AC;②存在一点P,D1O∥B1P;③若D1O⊥OP,则△D1C1P面积的最大值为5;④若P到直线D1C1的距离与到点B的距离相等,则P的轨迹为抛物线的一部分.其中所有正确结论的序号是________.
本文标题:第7章 必刷小题13 立体几何
链接地址:https://www.777doc.com/doc-12816512 .html