您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 第01讲 空间几何体的结构特征、表面积与体积(六大题型)(讲义)(教师版)
第01讲空间几何体的结构特征、表面积与体积目录考点要求考题统计考情分析(1)认识柱、锥、台、球及简单组合体的结构特征,能运用这些特征描述现实生活中简单物体的结构.(2)知道球、棱(圆)柱、棱(圆)锥、棱(圆)台的表面积和体积的计算公式,并能解决简单的实际问题.(3)能用斜二测画法画出简单空间图形的直观图.2023年乙卷(理)第8题,5分2023年甲卷(文)第10题,5分2023年天津卷第8题,5分2023年II卷第14题,5分2023年I卷第12题,5分(1)掌握基本空间图形及其简单组合体的概念和基本特征,能够解决简单的实际问题;(2)多面体和球体的相关计算问题是近几年考查的重点;(3)运用图形的概念描述图形的基本关系和基本结果,突出考查直观想象和逻辑推理.知识点一:构成空间几何体的基本元素—点、线、面(1)空间中,点动成线,线动成面,面动成体.(2)空间中,不重合的两点确定一条直线,不共线的三点确定一个平面,不共面的四点确定一个空间图形或几何体(空间四边形、四面体或三棱锥).知识点二:简单凸多面体—棱柱、棱锥、棱台1、棱柱:两个面互相平面,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.(1)斜棱柱:侧棱不垂直于底面的棱柱;(2)直棱柱:侧棱垂直于底面的棱柱;(3)正棱柱:底面是正多边形的直棱柱;(4)平行六面体:底面是平行四边形的棱柱;(5)直平行六面体:侧棱垂直于底面的平行六面体;(6)长方体:底面是矩形的直平行六面体;(7)正方体:棱长都相等的长方体.2、棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.(1)正棱锥:底面是正多边形,且顶点在底面的射影是底面的中心;(2)正四面体:所有棱长都相等的三棱锥.3、棱台:用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台,由正棱锥截得的棱台叫做正棱台.简单凸多面体的分类及其之间的关系如图所示.知识点三:简单旋转体—圆柱、圆锥、圆台、球1、圆柱:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的几何体叫做圆柱.2、圆柱:以直角三角形的一条直角边所在的直线为旋转轴,将其旋转一周形成的面所围成的几何体叫做圆锥.3、圆台:用平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台.4、球:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称为球(球面距离:经过两点的大圆在这两点间的劣弧长度).知识点四:组合体由柱体、锥体、台体、球等几何体组成的复杂的几何体叫做组合体.知识点五:表面积与体积计算公式表面积公式表面积柱体2直棱柱底SchS2(斜棱柱底SclSc为直截面周长)2222()圆锥Srrlrrl锥体12正棱锥底SnahS2()圆锥Srrlrrl台体1()2正棱台上下SnaahSS22)圆台(Srrrlrl球24SR体积公式体积柱体柱VSh锥体13锥VShSh台体1()3台VSSSSh球343VR知识点六:空间几何体的直观图1、斜二测画法斜二测画法的主要步骤如下:(1)建立直角坐标系.在已知水平放置的平面图形中取互相垂直的Ox,Oy,建立直角坐标系.(2)画出斜坐标系.在画直观图的纸上(平面上)画出对应图形.在已知图形平行于x轴的线段,在直观图中画成平行于Ox,Oy,使45xOy(或135),它们确定的平面表示水平平面.(3)画出对应图形.在已知图形平行于x轴的线段,在直观图中画成平行于x轴的线段,且长度保持不变;在已知图形平行于y轴的线段,在直观图中画成平行于y轴,且长度变为原来的一般.可简化为“横不变,纵减半”.(4)擦去辅助线.图画好后,要擦去x轴、y轴及为画图添加的辅助线(虚线).被挡住的棱画虚线.注:直观图和平面图形的面积比为2:4.2、平行投影与中心投影平行投影的投影线是互相平行的,中心投影的投影线相交于一点.题型一:空间几何体的结构特征例1.(2023·安徽·高三校联考阶段练习)已知几何体,“有两个面平行,其余各面都是平行四边形”是“几何体为棱柱”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】由棱柱定义知棱柱有两个面平行,其余各面都是平行四边形,故满足必要性;但有两个面平行,其余各面都是平行四边形的几何体不一定是棱柱,例如两个底面全等的斜棱柱拼接的几何体不是棱柱,如图所示:,故不满足充分性,故选:B例2.(2023·全国·高三对口高考)设有三个命题;甲:底面是平行四边形的四棱柱是平行六面体;乙:底面是矩形的平行六面体是长方体;丙:直四棱柱是平行六面体.以上命题中真命题的个数为()A.0个B.1个C.2个D.3个【答案】B【解析】由平行六面体的定义可得底面是平行四边形的四棱柱是平行六面体;命题甲正确;底面是矩形的平行六面体的侧棱不一定垂直于底面,故该几何体不一定为长方体,命题乙错误;直四棱柱的底面不一定为平行四边形,故直四棱柱不一定是平行六面体,命题丙错误;正确的命题只有一个.故选:B例3.(2023·全国·高三专题练习)下列命题:①有两个面平行,其他各面都是平行四边形的几何体叫做棱柱;②有两侧面与底面垂直的棱柱是直棱柱;③过斜棱柱的侧棱作棱柱的截面,所得图形不可能是矩形;④所有侧面都是全等的矩形的四棱柱一定是正四棱柱.其中正确命题的个数为()A.0B.1C.2D.3【答案】A【解析】①如图1,满足有两个面平行,其他各面都是平行四边形,显然不是棱柱,故①错误;②如图2,满足两侧面11ABBA与底面垂直,但不是直棱柱,②错误;③如图3,四边形11ACCA为矩形,即过斜棱柱的侧棱作棱柱的截面,所得图形可能是矩形,③错误;④所有侧面都是全等的矩形的四棱柱不一定是正四棱柱,因为两底面不一定是正方形,④错误.故选:A变式1.(2023·新疆·统考模拟预测)下列命题中正确的是()A.有两个平面平行,其余各面都是平行四边形的几何体是棱柱.B.各个面都是三角形的几何体是三棱锥.C.夹在圆柱的两个平行截面间的几何体还是一个旋转体.D.圆锥的顶点与底面圆周上任意一点的连线都是母线.【答案】D【解析】如图所示的几何体满足两个平面平行,其余各面都是平行四边形,但它不是棱柱,A错;正八面体的各面都是三角形,不是三棱锥,B错;如果两个平行截面与圆柱的底面平行,则是旋转体,如果这两个平行截面与圆柱的底面不平行,则不是旋转体.C错;根据圆锥的定义,D正确.故选:D.变式2.(2023·全国·高三专题练习)下列说法正确的是()A.三角形的直观图是三角形B.直四棱柱是长方体C.平行六面体不是棱柱D.两个平面平行,其余各面是梯形的多面体是棱台【答案】A【解析】对A,根据直观图的定义,三角形的直观图是三角形,故A对;对B,底面是长方形的直四棱柱是长方体,故B错;对C,平行六面体一定是棱柱,故C错;两个平面平行,其余各面是梯形的多面体,当侧棱延长后不交于同一点时,不是棱台,故D错;故选:A变式3.(2023·全国·高三专题练习)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0B.1C.2D.3【答案】A【解析】①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.故选:A.变式4.(2023·全国·高三专题练习)如图所示,观察四个几何体,其中判断正确的是()A.是棱台B.是圆台C.不是棱柱D.是棱锥【答案】D【解析】对A,侧棱延长线不交于一点,不符合棱台的定义,所以A错误;对B,上下两个面不平行,不符合圆台的定义,所以B错误;对C,将几何体竖直起来看,符合棱柱的定义,所以C错误;对D,符合棱锥的定义,正确.故选:D.【解题方法总结】空间几何体结构特征的判断技巧(1)紧扣结构特征是判断的关键,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定.(2)说明一个命题是错误的,只要举出一个反例即可.题型二:空间几何体的表面积例4.(2023·湖北武汉·统考模拟预测)已知某圆锥的母线长、底面圆的直径都等于球的半径,则球与圆锥的表面积之比为()A.8B.163C.316D.18【答案】B【解析】设圆锥的母线长为l,底面圆的半径为r,球的半径为R,则2lrR,即2Rr,2lr,球的表面积2214π16πSRr,圆锥的表面积22222ππ2ππ3πSrlrrrr,则212216π163π3SrSr.故选:B.例5.(2023·河南郑州·统考模拟预测)在一个正六棱柱中挖去一个圆柱后,剩余部分几何体如图所示.已知正六棱柱的底面正六边形边长为3cm,高为4cm,内孔半径为1cm,则此几何体的表面积是()2cm.A.277236π2B.722738πC.722736πD.602736π【答案】C【解析】所求几何体的侧面积为234672cm,上下底面面积为221336π22732πcm22,挖去圆柱的侧面积为22π48πcm,则所求几何体的表面积为2722736πcm.故选:C.例6.(2023·安徽安庆·安庆一中校考三模)陀螺起源于我国,最早出土的石制陀螺是在山西夏县发现的新石器时代遗址.如图所示的是一个陀螺立体结构图.已知,底面圆的直径12cmAB,圆柱体部分的高6cmBC=,圆锥体部分的高4cmCD,则这个陀螺的表面积(单位:2cm)是()A.1441213πB.1442413πC.1081213πD.1082413π【答案】C【解析】由题意可得圆锥体的母线长为2264213l,所以圆锥体的侧面积为112π2131213π2,圆柱体的侧面积为12π672π,圆柱的底面面积为2π636π,所以此陀螺的表面积为21213π72π36π1081213πcm,故选:C.变式5.(2023·西藏拉萨·统考一模)位于徐州园博园中心位置的国际馆(一云落雨),使用现代科技雾化“造云”,打造温室客厅,如图,这个国际馆中3个展馆的顶部均采用正四棱锥这种经典几何形式,表达了理性主义与浪漫主义的对立与统一.其中最大的是3号展馆,其顶部所对应的正四棱锥底面边长为19.2m,高为9m,则该正四棱锥的侧面面积与底面面积之比约为()(参考数据:173.1613.16)A.2B.1.71C.1.37D.1【答案】C【解析】如图,设H为底面正方形ABCD的中心,G为BC的中点,连接PH,HG,PG,则PHHG,PGBC,所以222299.6173.1613.16PGPHHG,则144226.3221.3719.2PBCABCDBCPGSPGSABBCAB正方形△,故选:C.变式6.(2023·湖南长沙·高三校联考阶段练习)为了给热爱朗读的师生提供一个安静独立的环境,某学校修建了若干“朗读亭”.如图所示,该朗读亭的外形是一个正六棱柱和正六棱锥的组合体,正六棱柱两条相对侧棱所在的轴截面为正方形,若正六棱锥的高与底面边长的比为2:3,则正六棱锥与正六棱柱的侧面积的比值为()A.78B.4324C.19D.127【答案】B【解析】设正六边形的边长为a,由题意正六棱柱的高为2a,因为正六棱锥的高与底面边长的比为2:3,所以正六棱锥的高为23a,正六棱锥的母线长为133a,正六棱锥的侧面积222111314362942Saaaa
本文标题:第01讲 空间几何体的结构特征、表面积与体积(六大题型)(讲义)(教师版)
链接地址:https://www.777doc.com/doc-12817276 .html