您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 考点巩固卷26分布列及三大分布(十一大考点)(原卷版)
考点巩固卷26分布列及三大分布考点01分布列均值和方差的性质1.(多选)已知离散型随机变量X的分布列为X101P12a16若离散型随机变量Y满足21YX,则下列说法正确的有()A.213PXB.EXEY0C.109DYD.112PY2.(多选)若随机变量X服从两点分布,其中103PX,EX,DX分别为随机变量X的均值与方差,则下列结论正确的是()A.1PXEXB.324EXC.324DXD.94DX3.(多选)已知随机变量X的分布列为X101Pm0.20.3若随机变量0,RYaXbab,10EY,19DY,则下列选项正确的为()A.0.5mB.6aC.11bD.160.3PY4.(多选)若随机变量19,3XB,下列说法中正确的是()A.3639213C33PXB.期望()3EXC.期望(41)11EXD.方差(25)8DX5.已知随机变量X的概率分布为X-2-1012P141315m120若3YaX=+,且112EY=,则a_____.6.已知随机变量X的分布列为X21012P141315m120(1)求m的值;(2)求EX;(3)若23YX,求EY.考点02独立事件的乘法公式7.甲和乙两个箱子中各装有10个球,其中甲箱中有5个白球,5个红球,乙箱中有8个红球,2个白球.掷一枚质地均匀的骰子,如果点数为5或6,从甲箱子随机摸出1个球;如果点数为1,2,3,4,从乙箱子中随机摸出1个球.则在摸到红球的条件下,红球来自甲箱子的概率为_____.8.某同学在上学的路上要经过3个十字路口,在每个路口是否遇到红灯相互独立,设该同学在三个路口遇到红灯的概率分别为12,13,14.(1)求该同学在上学路上恰好遇到一个红灯的概率;(2)若该同学在上学路上每遇到1个红灯,到校打卡时间就会比规定打卡时间晚48秒,记该同学某天到校打卡时间比规定时间晚X秒,求X的分布列和数学期望.9.甲、乙、丙三人进行台球比赛,比赛规则如下:先由两人上场比赛,第三人旁观,一局结束后,败者下场作为旁观者,原旁观者上场与胜者比赛,按此规则循环下去.若比赛中有人累计获胜3局,则该人获得最终胜利,比赛结束,三人经过抽签决定由甲、乙先上场比赛,丙作为旁观者.根据以往经验,每局比赛中,甲、乙比赛甲胜概率为12,乙、丙比赛乙胜概率为13,丙、甲比赛丙胜概率为23,每局比赛相互独立且每局比赛没有平局.(1)比赛完3局时,求甲、乙、丙各旁观1局的概率;(2)已知比赛进行5局后结束,求甲获得最终胜利的概率.10.手工刺绣是中国非物质文化遗产之一,指以手工方式,用针和线把人的设计和制作添加在任何存在的织物上的一种艺术,大致分为绘制白描图和手工着色、电脑着色,选线、配线和裁布三个环节,简记为工序A,工序B,工序C.经过试验测得小李在这三道工序成功的概率依次为12,23,34.现某单位推出一项手工刺绣体验活动,报名费30元,成功通过三道工序最终的奖励金额是200元,为了更好地激励参与者的兴趣,举办方推出了一项工序补救服务,可以在着手前付费聘请技术员,若某一道工序没有成功,可以由技术员完成本道工序.每位技术员只完成其中一道工序,每聘请一位技术员需另付费100元,制作完成后没有接受技术员补救服务的退还一半的聘请费用.(1)若小李聘请一位技术员,求他成功完成三道工序的概率;(2)若小李聘请两位技术员,求他最终获得收益的期望值.11.某产品在出厂前需要经过质检,质检分为2个过程,第1个过程,将产品交给3位质检员分别进行检验,若3位质检员检验结果均为合格,则产品不需要进行第2个过程,可以出厂;若3位质检员检验结果均为不合格,则产品视为不合格产品,不可以出厂;若只有1位或2位质检员检验结果为合格,则需要进行第2个过程,第2个过程,将产品交给第4位和第5位质检员检验,若这2位质检员检验结果均为合格,则可以出厂,否则视为不合格产品,不可以出厂.设每位质检员检验结果为合格的概率均为34,且每位质检员的检验结果相互独立.(1)求产品需要进行第2个过程的概率;(2)求产品不可以出厂的概率.12.挑选空间飞行员可以说是“万里挑一”,要想通过需要五关:目测、初检、复检、文考(文化考试)、政审.若某校甲、乙、丙三位同学都顺利通过了前两关,根据分析甲、乙、丙三位同学通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,由于他们平时表现较好,都能通过政审关,若后三关之间通过与否没有影响.(1)求甲被录取成为空军飞行员的概率;(2)求甲、乙、丙三位同学中恰好有一个人通过复检的概率;考点03超几何分布13.(多选)某单位推出了10道有关二十大的测试题供学习者学习和测试,乙能答对其中的6道题,规定每次测试都是从这10道题中随机抽出4道,答对一题加10分,答错一题或不答减5分,最终得分最低为0分,则下列说法正确的是()A.乙得40分的概率是114B.乙得25分的概率是821C.乙得10分的概率是37D.乙得0分的概率是121014.某商场为促销组织了一次幸运抽奖活动.袋中装有18个除颜色外其余均相同的小球,其中8个是红球,10个是白球.抽奖者从中一次抽出3个小球,抽到3个红球得一等奖,抽到2个红球得二等奖,抽到1个红球得三等奖,抽到0个红球不得奖.求得一等奖、二等奖和三等奖的概率.15.一个口袋中有4个白球,2个黑球,每次从袋中取出一个球(1)若不放回的取2次球,求在第一次取出白球的条件下,第二次取出的是黑球的概率;(2)若不放回的取3次球,求取出白球次数X的分布列及EX.16.某研究小组为研究经常锻炼与成绩好差的关系,从全市若干所学校中随机抽取100名学生进行调查,其中有体育锻炼习惯的有45人.经调查,得到这100名学生近期考试的分数的频率分布直方图.记分数在600分以上的为优秀,其余为合格.(1)请完成下列22列联表.根据小概率值0.01的独立性检验,分析成绩优秀与体育锻炼有没有关系.经常锻炼不经常锻炼合计合格25优秀10合计100(2)现采取分层抽样的方法,从这100人中抽取10人,再从这10人中随机抽取5人进行进一步调查,记抽到5人中优秀的人数为X,求X的分布列.附:22()nadbcabcdacbd,其中nabcd.2Pk≥0.0500.0100.001k3.8416.63510.82817.某乒乓球队训练教官为了检验学员某项技能的水平,随机抽取100名学员进行测试,并根据该项技能的评价指标,按60,65,65,70,70,75,75,80,80,85,85,90,90,95,95,100分成8组,得到如图所示的频率分布直方图.(1)求a的值,并估计该项技能的评价指标的中位数(精确到0.1);(2)若采用分层抽样的方法从评价指标在70,75和85,90内的学员中随机抽取12名,再从这12名学员中随机抽取5名学员,记抽取到学员的该项技能的评价指标在70,75内的学员人数为X,求X的分布列与数学期望.18.某公司生产一种电子产品,每批产品进入市场之前,需要对其进行检测,现从某批产品中随机抽取9箱进行检测,其中有5箱为一等品.(1)若从这9箱产品中随机抽取3箱,求至少有2箱是一等品的概率;(2)若从这9箱产品中随机抽取3箱,记表示抽到一等品的箱数,求的分布列和期望.考点04二项分布19.近年来,国家鼓励德智体美劳全面发展,舞蹈课是学生们热爱的课程之一,某高中随机调研了本校2023年参加高考的90位考生是否喜欢跳舞的情况,经统计,跳舞与性别情况如下表:(单位:人)喜欢跳舞不喜欢跳舞女性2535男性525(1)根据表中数据并依据小概率值0.05的独立性检验,分析喜欢跳舞与性别是否有关联?(2)用样本估计总体,用本次调研中样本的频率代替概率,从2023年本市考生中随机抽取3人,设被抽取的3人中喜欢跳舞的人数为X,求X的分布列及数学期望EX.附:22nadbcabcdacbd,nabcd.0.100.050.0250.0100.005x2.7063.8415.0246.6357.87920.某地区对某次考试成绩进行分析,随机抽取100名学生的A,B两门学科成绩作为样本.将他们的A学科成绩整理得到如下频率分布直方图,且规定成绩达到70分为良好.已知他们中B学科良好的有50人,两门学科均良好的有40人.(1)根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为这次考试学生的A学科良好与B学科良好有关;B学科良好B学科不够良好合计A学科良好A学科不够良好合计(2)用样本频率估计总体概率,从该地区参加考试的全体学生中随机抽取3人,记这3人中A,B学科均良好的人数为随机变量X,求X的分布列与数学期望.附:22nadbcKabcdacbd,其中nabcd.20PKk0.150.100.050.0250.0100.0050.0010.150k2.0722.7063.8415.0246.6357.87910.8282.07221.某数学兴趣小组设计了一个开盲盒游戏:在编号为1到4号的四个箱子中随机放入奖品,每个箱子中放入的奖品个数满足()(1,2,3,4,5)Pnknn,每个箱子中所放奖品的个数相互独立.游戏规定:当箱子中奖品的个数超过3个时,可以从该箱中取走一个奖品,否则从该箱中不取奖品.每个参与游戏的同学依次从1到4号箱子中取奖品,4个箱子都取完后该同学结束游戏.甲、乙两人依次参与该游戏.(1)求甲能从1号箱子中取走一个奖品的概率;(2)设甲游戏结束时取走的奖品个数为X,求X的概率分布与数学期望;(3)设乙游戏结束时取走的奖品个数为Y,求Y的数学期望.22.一名学生每天骑车上学,从家到学校的途中经过6个路口.假设他在各个路口遇到红灯的事件是相互独立的,并且概率都是13.(1)用X表示这名学生在途中遇到红灯的次数,求X的分布;(2)求这名学生在途中至少遇到一次红灯的概率.23.某人准备应聘甲、乙两家公司的高级工程师,两家公司应聘程序都是:应聘者先进行三项专业技能测试,专业技能测试通过后进入面试.已知该应聘者应聘甲公司,每项专业技能测试通过的概率均为23,该应聘者应聘乙公司,三项专业技能测试通过的概率依次为56,23,m,其中01m,技能测试是否通过相互独立.(1)若23m,分别求该应聘者应聘甲、乙两家公司,三项专业技能测试恰好通过两项的概率;(2)若甲、乙两家公司的招聘在同一时间进行,该应聘者只能应聘其中一家,若以专业技能测试通过项目数的数学期望为决策依据,该应聘者更有可能通过乙公司的技能测试,求m的取值范围.24.卡塔尔世界杯的吉祥物“拉伊卜”引发网友和球迷喜爱,并被亲切地称为“饺子皮”.某公司被授权销售以“拉伊卜”为设计主题的精制书签.该精制书签的生产成本为50元/个,为了确定书签的销售价格,该公司对有购买精制书签意向的球迷进行了调查,共收集了200位球迷的心理价格来估计全部球迷的心理价格分布.这200位球迷的心理价格对应人数比例分布如下图:若只有在精制书签的销售价格不超过球迷的心理价格时,球迷才会购买精制书签.公司采用常见的饥饿营销的方法刺激球迷购买产品,规定每位球迷最多只能购买一个该精制书签.设每位球迷是否购买该精制书签相互独立,精制书签的销售价格为x元/个(6090x).(1)若80x,已知某时段有3名球迷有购买意向而咨询公司,设X为这3名球迷中购买精制书签的人数,求X的分布列和期望;(2)假设共有Z名球迷可能购买该精制书签,请比较当精制书签的售价分别定为70元和80元时,哪种售价对应的总利润的期望最大?考点05二项分布
本文标题:考点巩固卷26分布列及三大分布(十一大考点)(原卷版)
链接地址:https://www.777doc.com/doc-12823262 .html