您好,欢迎访问三七文档
电炉炼钢工艺朱荣1电炉炼钢工艺的发展历程1905年第一台5吨工业炼钢电炉建成(德国人R.Linberg)1936年德国制造了可炉盖旋转的炼钢电炉1936年美国建成了当时最大的100吨炼钢电炉1964年美国碳化物公司(W.E.Schwabe)和西北钢铁线材公司(C.GRobinson)提出电炉超高功率概念(UltraHighPower简称UHP),电炉工业开始走向辉煌。开始与转炉竞争。1990年后,电炉炼钢技术取得了重大进展。炼钢技术的进步主要进步集中在电炉炼钢领域。世界电炉生产迅速发展动力社会废钢积累的增长,环境压力。低生产成本的经济刺激,廉价废钢及廉价电力。对提高劳动生产率的追求。采用废钢作原料的电弧炉工艺,流程短,生产率高,全员劳动生产率高达2700~4000t/(人·a),几乎是高炉—转炉流程的3~4倍。我国钢铁行业2010年能耗构成的预测值,矿石经高炉/转炉流程而成粗钢的单位能耗高于600kgce/t,其中氧气转炉炼钢工序能耗仅为10kgce/t,主要能耗是高炉和炼焦工序。铁前系统烧结、炼焦和高炉炼铁是能耗大户,也是污染环境的大户。相比之下,废钢经电炉熔炼所生产的粗钢吨钢能耗仅为270kgce/t,而污染的产生及其治理更远优于高炉/转炉流程。电炉炼钢的其它优势世界粗钢产量增长情况世界钢产量预测电弧炉技术的发展2电炉炼钢主体设备介绍机械设备炉壳、炉门、出钢槽或偏心炉底出钢、炉盖,分水冷和耐材电极夹持器、电极升降装置炉盖提升旋转机构、炉体旋转或开出排烟除尘装置炉顶加料装置电气设备变压器电抗器短网隔离开关及高压断路器电极升降自动调节装置3电炉炼钢的能量来源电能化学能。包括炉料带来的物理热及氧化带来的化学热、外来输入的燃料。传统电炉总能量平衡总能量630kWh/t=100%电能410kWh/t(65%)烧嘴40kWh/t(6%)化学反应180kWh/t(29%)废气140kWh/t(22%)钢380kWh/t(60%)损失10kWh/t(2%)冷却50kWh/t(8%)渣50kWh/t(8%)现代电炉总能量平衡(装铁水)3.1供电60年代-400kVA/tRP-EAFMC30MVA/特殊钢,合金钢冶炼周期:180min吨钢电耗:630kwh/t电极消耗:6.5kg/t高电压大电流短弧80年代-700kVA/t90年代800kVA/t70年代-500kVA/tUHP1-EAFLFCC(S)BR50MVA/30万吨/棒线材UHP2-EAFLFCCR70MVA/50万吨/扁平材,管材UHP3-EAFLFCCCR100MVA/100万吨/纯净钢,热带冶炼周期:40min吨钢电耗:230kwh/t电极消耗:1.1kg/t低电压大电流更短弧高电压小电流长弧更高电压小电流更长弧烧嘴二次冶金水冷炉壁DRILF/EBT泡沫渣竖炉/用氧双炉壳连续加料年代功率级别-400kVA/t流程变迁变压器容量/产品技术指标进步相关/配套技术电气运行供电技术发展直流电弧炉消除炉衬热点问题,减少电极消耗,搅拌熔池消除偏弧;减少对电网冲击高阻抗电弧炉利用泡沫渣埋弧操作、提高变压器水平,降低电极消耗提高功率因数,减轻对电网干扰无功功率静止式动态补偿消除或减弱电弧炉冶炼冶炼中电负荷造成的电压波动与谐波对电网的危害降低闪烁和谐波冶炼过程计算机自动化控制按冶金模型、热模型进行最佳配料、电热平衡、最佳控制功率等计算,实现控制、管理、决策合理电气工作点动态选择、保证合理供电制度执行智能电弧炉利用人工智能,具有三相意识,也可进行电弧炉综合控制解决电弧炉供电三相不平衡问题,减少对电网冲击普通功率与超高功率电弧炉工作点配电操作冶炼阶段根据工艺要求输入的功率是不相同的,在各个阶段调节输入功率大小,电功率的调节称为配电操作。配电操作分:送电、停电、调换电压、调节电流及电气设备的监护。配电分手动及自动调节,好的配电制度对缩短冶炼时间及降低电耗是非常重要的。供电时间确定1.C吨钢电耗,kWh/t2.W钢水总重,t3.P电炉变压器容量,kV.A4.变压器利用率,5.非通电时间,min3.2供氧炉门人工吹氧从1根氧管到3根氧管;炉门吹氧机械手强化供氧及安全生产;炉壁氧燃枪(可加二次燃烧)辅助能量;EBT氧枪解决偏心炉的冷区及成分均匀;炉壁氧气碳粉喷吹模块可伸入式及固定式;炉壁及烟道的二次燃烧氧枪利用余热、能量极限利用电炉供氧示意图北京科大电炉炼钢用氧专利技术内容电炉炉门多功能吹氧装置电炉炉壁氧燃助熔及二次燃烧氧枪电炉炉壁及EBT氧枪电炉炉顶氧枪电炉炉壁氧气及碳粉喷吹模块(集束氧枪)电炉泡沫渣技术电炉用氧诊断--电炉用氧模块化控制技术在吹氧条件下,熔池中各元素氧化1kg时所产生的理论热值反应热元素产物kJ/kgkwh/kg相对成本*(参考值)AlSiMnFeCCAl2O3SiO2MnOFeOCOCO230.99532.1576.9924.7759.15932.7618.618.931.941.332.549.103.73.26.01.80.5~0.60.3~0.6化学反应中各发热元素的来源首先是炉料――废钢和生铁,还有是由碳枪喷入的碳粉或焦粉。对于普通铁水,每吹入1m3的氧气,所含各元素在1600℃时反应理论发热值约为4kwh。在电炉采用多种供氧方式以后,如何做到炉内均衡供氧是非常重要的。目的:1、控制吨钢耗氧;2、提高金属收得率;3、解决除尘冷却装置及电极等氧化。控制方式:1、结合热平衡及物料平衡;2、结合原有炉次的供氧曲线;3、根据冶炼状况,分解不同供氧方式的供氧量;4、检测冶炼过程炉气成分的变化,调整供氧量。电炉用氧模块化控制技术4电炉炼钢的原料传统的电弧炉炼钢是全废钢工艺以冷废钢为主,配加10%左右的生铁块;现代电弧炉炼钢使用的其它原料还有:除冷生铁外,直接还原铁(DRI,HBI)、热铁水、碳化铁等;电弧炉炼钢的原料构成对其工艺、装备、指标等有决定性影响;不同原料结构下的生产过程是不可比的。或者说只有原料结构相当的情况下才是可比较的。废钢电炉炼钢是一种铁资源回收再利用过程,也是一种处理污染的环保技术。仅就电炉炼钢工序而言,废钢是基本原料,废钢原料需进行鉴别、分类管理和打包、剪切等预处理。当前电炉炼钢使用废钢原料的最大问题是金属残留元素,主要是残留的Ni,Cr,Mo等合金元素和Cu,Sn,Bi,Sd,Pb等有害元素。它们在电炉炼钢过程中尚无有效方法去除,残留在钢材中造成种种危害,并在废钢循环再利用过程中不断积累。目前采用的对策主要有:①加强废钢管理;②在废钢预加工过程中挑选或分离;③冶炼过程配加其他铁源,稀释残留元素的浓度。其它金属料冷生铁:配碳、稀释残留元素、渣量增加直接还原铁:粒状直接还原铁(DRI)和块状热压块(HBI)铁水:配加10%的热铁水,带入的物理热约为25kwh/t-steel,化学热约25kwh/t-steel,(而氧耗6~7m3/t-steel)碳化铁(Fe3C):技术问题,不能大量生产5电炉冶炼工艺传统冶炼工艺(三段工艺)熔化期、氧化期、还原期现代冶炼工艺(二段工艺)熔化期、氧化期、加炉外处理;或称熔氧脱磷期、脱碳升温期操作步骤:补炉、装料(配料)、熔化期、氧化期、精炼(或还原期)、出钢5.1补炉电炉补炉工作量是很大的,补炉的重点是:①渣线(渣的浸蚀);②靠电极(最容易跑钢的地方);电弧的辐射;补炉用大铲或喷枪。5.2装料(配料)对废钢的要求(1)不允许有有色金属。(2)不允许有封闭器皿、易爆炸物。(3)入炉的钢铁料块度要合适,不能太大。装料量要求二次进料:第1次,60%;第2次,40%;三次进料:第1次,40%;第2、3次,30%;四次进料:第1、2次,30%;第3、4次,20%。配碳的重要性重要性:废钢铁氧化、氧化期去气(N、H)、去夹杂;最低配C计算:配C量%=0.50%(熔化期损失)+0.2-0.3%(氧化需要)+氧化终了碳含量。装料原则:大、中、小料配合;重料在下、轻料在上;大块在中、轻料在边。5.3废钢熔化阶段操作熔化期是电炉工艺中能源消耗的大头,冶炼时间的50-80%,因此,电炉的节能降耗主要在熔化期。废钢熔化过程:从中心向四周、从热区向冷区、从下向上。熔化期操作原则:合理供电、合适吹氧、提前造渣。吹氧方式:自耗式:可切割、可吹渣钢界面;水冷式:只能吹渣钢界面。优化的供电曲线0510152025303540455004812162024288min4min3min5min2min5min2min5min2min19/618/621/615/518/621/615/518/615/5(精炼)(二次料)(加铁水)(一次料)供电时间min电压级别/电流级别V/A5.4电炉氧化期操作氧化期的任务:继续脱P、脱C去气(N、H)、去夹杂钢液升温电炉熔氧期操作:熔化废钢与氧化期脱碳结合,提前造渣脱磷。元素氧化方式铁矿石氧化:吸热、有利于脱磷、增加金属量Fe2O3+3C=2Fe+3CO吹氧气氧化:放热、对脱磷不利、但可部分脱硫,渣中氧化铁增加。矿石加吹氧氧化期操作熔清、取样分析(全分析)、加石灰、吹氧化渣、流渣脱P、加石灰、测温,视钢中含碳量吹氧脱碳;看P:取样分析、看渣子的颜色(黑亮P高、灰黑P低)、看渣子的泡沫化;看C:取样分析、看火花、砂轮对比、副枪;看温度:蓝白亮、浅蓝、深蓝、浅红、深红;取样全分析、测温,静沸腾等待出钢;传统工艺:扒除氧化渣,为还原期造渣做准备。氧化期的造渣氧化期的造渣要根据脱磷及脱碳的要求、具有合适的炉渣成分及流动性渣中∑FeO含量一般控制在10-20%,碱度控制在2.5-3.0,总渣量在2-4%。磷的控制3个关键因素:炉渣氧化性、石灰含量、温度。Healy经验式:lg(%P)/[%P]=22350/T-16.0+0.08%(CaO)+2.5lg%(TFeO)常规工艺[%P]0.030以下脱磷的主要工艺:强化吹氧提高初渣氧化性提前造高碱度渣流渣造新渣喷粉技术的应用氧化期喷粉脱磷碳的控制作用:减少金属烧损、降低熔池温度、促进钢渣反应、促进脱磷、促进泡沫渣形成、去气去夹杂。温度控制T出钢=t1+△t过程-△t加热+△t浇铸t1液相线温度△t过程过程降温△t加热钢包温度补偿△t浇铸浇铸降温氧化终点特别情况处理(1)碳高磷低,温度低,吹氧;温度高,低功率操作;(2)碳高磷高,先脱P后脱C(可加部分矿石);(3)碳低磷高,温度合适,造FeO渣;温度高(加矿石),停电;(4)低磷低温,性碳低,加大电功率,造泡沫渣;碳高,吹氧,一般功率。5.5冶炼过程造泡沫渣泡沫渣是指在不增大渣量的情况下,使炉渣呈很厚的泡沫状泡沫渣的作用1.采用长弧泡沫渣操作可以增加电炉输入功率,提高功率因数及热效率;2.降低电炉冶炼电耗,缩短了冶炼时间;3.减少了电弧热辐射对炉壁及炉盖的热损失;4.泡沫渣有利于炉内化学反应,特别有利于脱P、C及去气(N、H)泡沫渣对电能输入的影响对炉渣泡沫渣高度的影响泡沫渣新工艺1、设备要求性能稳定及易操作的喷粉设备碳粉喷吹量、粒度及喷粉速度控制稳定干燥的喷吹气源及定期的设备检查泡沫渣技术2、造泡沫渣的新思路----解决喷吹区域炉门区及炉后区域同时喷碳,全熔池区域泡沫化及全程泡沫渣冶炼。3、热装铁水后的泡沫渣有丰富的碳源,喷碳任务减轻,但喷碳粉在冶炼前期及后期作用是很大的。铁水热装的终渣FeO高达30%。5.6电炉还原期还原期是转炉炼钢没有的。还原期的主要任务是:1去除钢液中的氧2去除钢液中的硫3调整钢液的温度,成份到规定成分;4合金化•这四点是相互联系及同时进行的。脱O与脱S的关系,合金化与脱O、S,脱O、S时加入的合金Mn,就是成品需要的合金。•进入还原或采用炉外精炼的条件是无渣出钢。无渣出钢残余氧化渣的危害:降低脱硫脱氧能力;降低合金收得率;降低钢包搅拌强度;降低包衬寿命。偏心炉底出钢彻底解决了这一问题。传统电炉需扒渣。传统出钢-虹吸出钢还原期操作扒除氧化渣后加石灰和莹石化渣、加碳粉造白渣或电石渣还原5-10分钟推渣,取样全分析、测温补加渣料加C粉成份温度合格、加合金测温度、看脱氧、出钢。还原白渣及
本文标题:电炉炼钢工艺
链接地址:https://www.777doc.com/doc-1300887 .html