您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 机械能守恒(系统)精讲精练(吐血整理)
1系统的机械能守恒由两个或两个以上的物体所构成的系统,其机械能是否守恒,就看除了重力、弹力之外,系统内的各个物体所受到的各个力做功之和是否为零,为零,则系统的机械能守恒;做正功,系统的机械能就增加,做做多少正功,系统的机械能就增加多少;做负功,系统的机械能就减少,做多少负功,系统的机械能就减少多少。系统间的相互作用力分为三类:1)刚体产生的弹力:比如轻绳的弹力,斜面的弹力,轻杆产生的弹力等2)弹簧产生的弹力:系统中包括有弹簧,弹簧的弹力在整个过程中做功,弹性势能参与机械能的转换。3)其它力做功:比如炸药爆炸产生的冲击力,摩擦力对系统对功等。在前两种情况中,轻绳的拉力,斜面的弹力,轻杆产生的弹力做功,使机械能在相互作用的两物体间进行等量的转移,系统的机械能还是守恒的。虽然弹簧的弹力也做功,但包括弹性势能在内的机械能也守恒。但在第三种情况下,由于其它形式的能参与了机械能的转换,系统的机械能就不再守恒了。归纳起来,系统的机械能守恒问题有以下四个题型:(1)轻绳连体类(2)轻杆连体类(3)在水平面上可以自由移动的光滑圆弧类。(4)悬点在水平面上可以自由移动的摆动类。(1)轻绳连体类这一类题目,系统除重力以外的其它力对系统不做功,系统内部的相互作用力是轻绳的拉力,而拉力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。例:如图,倾角为的光滑斜面上有一质量为M的物体,通过一根跨过定滑轮的细绳与质量为m的物体相连,开始时两物体均处于静止状态,且m离地面的高度为h,求它们开始运动后m着地时的速度?分析:对M、m和细绳所构成的系统,受到外界四个力的作用。它们分别是:M所受的重力Mg,m所受的重力mg,斜面对M的支持力N,滑轮对细绳的作用力F。M、m的重力做功不会改变系统的机械能,支持力N垂直于M的运动方向对系统不做功,滑轮对细绳的作用力由于作用点没有位移也对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是细绳的拉力,拉力做功只能使机械能在系统内部进行等量的转换也不会改变系统的机械能,故满足系统机械能守恒的外部条件。在能量转化中,m的重力势能减小,动能增加,M的重力势能和动能都增加,用机械能的减少量等于增加量是解决为一类题的关键222121sinmvMvMghmgh可得mMMmghv)sin(2需要提醒的是,这一类的题目往往需要利用绳连物体的速度关系来确定两个物体的2速度关系例:如图,光滑斜面的倾角为,竖直的光滑细杆到定滑轮的距离为a,斜面上的物体M和穿过细杆的m通过跨过定滑轮的轻绳相连,开始保持两物体静止,连接m的轻绳处于水平状态,放手后两物体从静止开始运动,求m下降b时两物体的速度大小?(2)轻杆连体类这一类题目,系统除重力以外的其它力对系统不做功,物体的重力做功不会改变系统的机械能,系统内部的相互作用力是轻杆的弹力,而弹力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。例:如图,质量均为m的两个小球固定在轻杆的端,轻杆可绕水平转轴在竖直平面内自由转动,两小球到轴的距离分别为L、2L,开始杆处于水平静止状态,放手后两球开始运动,求杆转动到竖直状态时,两球的速度大小分析:由轻杆和两个小球所构成的系统受到外界三个力的作用,即A球受到的重力、B球受到的重力、轴对杆的作用力。两球受到的重力做功不会改变系统的机械能,轴对杆的作用力由于作用点没有位移而对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是轻杆的弹力,弹力对A球做负功,对B球做正功,但这种做功只是使机械能在系统内部进行等量的转换也不会改变系统的机械能,故满足系统机械能守恒的外部条件。在整个机械能当中,只有A的重力势能减小,A球的动能以及B球的动能和重力势能都增加,我们让减少的机械能等于增加的机械能。有:2221212BAmvmvmgLLmg根据同轴转动,角速度相等可知BAvv2所以:gLvgLvBA52522需要强调的是,这一类的题目要根据同轴转动,角速度相等来确定两球之间的速度关系(3)在水平面上可以自由移动的光滑圆弧类。光滑的圆弧放在光滑的水平面上,不受任何水平外力的作用,物体在光滑的圆弧上滑动,这一类的题目,也符合系统机械能守恒的外部条件和内部条件,下面用具体的例子来说明例:四分之一圆弧轨道的半径为R,质量为M,放在光滑的水平地面上,一质量为m的球(不计体积)从光滑圆弧轨道的顶端从静止滑下,求小球滑离轨道时两者的速度?分析:由圆弧和小球构成的系统受到三个力作用,分别是M、m受到的重力和地面的支持力。m的重力做正功,但不改变系统的机械能,支持力的作用点在竖直方向上没有位移,也对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是圆弧和球之间的弹力,弹力对m做负功,对M做正功,但这种做功只是使机械能在系统内部进行等量的转换,不会改变系统的机械能,故满足系统3机械能守恒的外部条件。在整个机械能当中,只有m的重力势能减小,m的动能以及M球的动能都增加,我们让减少的机械能等于增加的机械能。有:222121mMmvMvmgR根据动量守恒定律知MmMvmv0所以:)(2)(2mMMgRMvmMMgRmvMm(4)悬点在水平面上可以自由移动的摆动类。悬挂小球的细绳系在一个不受任何水平外力的物体上,当小球摆动时,物体能在水平面内自由移动,这一类的题目和在水平面内自由移动的光滑圆弧类形异而质同,同样符合系统机械能守恒的外部条件和内部条件,下面用具体的例子来说明例:质量为M的小车放在光滑的天轨上,长为L的轻绳一端系在小车上另一端拴一质量为m的金属球,将小球拉开至轻绳处于水平状态由静止释放。求(1)小球摆动到最低点时两者的速度?(2)此时小球受细绳的拉力是多少?分析:由小车和小球构成的系统受到三个力作用,分别是小车、小球所受到的重力和天轨的支持力。小球的重力做正功,但重力做功不会改变系统的机械能,天轨的支持力,由于作用点在竖直方向上没有位移,也对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是小车和小球之间轻绳的拉力,该拉力对小球做负功,使小球的机械能减少,对小车做正功,使小车的机械能增加,但这种做功只是使机械能在系统内部进行等量的转换,不会改变系统的机械能,故满足系统机械能守恒的外部条件。在整个机械能当中,只有小球的重力势能减小,小球的动能以及小车的动能都增加,我们让减少的机械能等于增加的机械能。有:222121mMmvMvmgL根据动量守恒定律知MmMvmv0所以:)(2)(2mMMgLMvmMMgLmvMm当小球运动到最低点时,受到竖直向上的拉力T和重力作用,根据向心力的公式LmvmgT2但要注意,公式中的v是m相对于悬点的速度,这一点是非常重要的LvvmmgTMm2)(解得:MmMmgT234机械能守恒定律的五类应用一、连续媒质的流动问题例1如图1所示,一粗细均匀的U形管内装有同种液体竖直放置,右管口用盖板A密闭一部分气体,左管口开口,两液面高度差为h,U形管中液柱总长为4h,现拿去盖板,液柱开始流动,当两侧液面恰好相齐时,右侧液面下降的速度大小为多少?解析:将盖板A拿去后,右管液面下降,左管液面上升。系统的重力势能减少动能增加,当左右两管液面相平时势能最小,动能最大。设液体密度为ρ,液柱的截面积为S,液柱流动的最大速度为V,由机械能守恒定律得:2212`mvhgm,将2`hsm,hSm4代入上式解得:8ghv例2如图2所示,露天娱乐场空中列车是由许多节完全相同的车厢组成,列车先沿光滑水平轨道行驶,然后滑上一固定的半径为R的空中圆形光滑轨道,若列车全长为L(L>2πR),R远大于一节车厢的长度和高度,那么列车在运行到圆环前的速度至少要多大,才能使整个列车安全通过固定的圆环轨道(车厢间的距离不计)?解析:当列车进入轨道后,动能逐渐向势能转化,车速逐渐减小,当车厢占满环时的速度最小。设运行过程中列车的最小速度为V,列车质量为M则轨道上的那部分车的质量为LmR2。由机械能守恒定律得:gRLRmmvmv22121220…………①由圆周运动规律可知,列车的最小速率为:gRv…………②解①②得:LgRgRv204二、轻杆连接体问题例3如图3所示,一根轻质细杆的两端分别固定着A、B两只质量均为m的小球,O点是一光滑水平轴,已知AO=L,BO=2L,使细杆从水平位置由静止开始转动,当B球转到O点正下方时,它对细杆的拉力大小是多大?解析:对A、B两球组成的系统应用机械能守恒定律得:2221212BAmvmvmgLLmg………………①因A、B两球用轻杆相连,故两球转动的角速度相等,即:LvLvBA2…………②设B球运动到最低点时细杆对小球的拉力为T,由牛顿第二定律得:Ah图1图2V0ORAOB图35LvmmgTB22……………………③解①②③得:mgT8.1,由牛顿第三定律知,B球对细杆的拉力大小等于mg8.1,方向竖直向下。三、轻绳连接体问题例4质量为M和m的两个小球由一细线连接(M>m),将M置于半径为R的光滑球形容器上口边缘,从静止释放(如图4所示),求当M滑至容器底部时两球的速度(两球在运动过程中细线始终处于绷紧状态)。解析:设M滑至容器底部时速度为VM,此时m的速度为Vm,根据运动效果,将VM沿绳方向和垂直于绳的方向分解,则有:mMvv045cos………………①由机械能守恒定律得:2221212mMmvMvmgRMgR………………②解①②两式得:mMmMgRvM2)2(4,方向水平向左;mMmMgRvm2)2(2,方向竖直向上。四、弹簧连接体问题例5如图5所示,半径mR50.0的光滑圆环固定在竖直平面内。轻持弹簧一端固定在环的最高点A处,另一端系一个质量kgm20.0的小球,小球套在圆环上。已知弹簧的原长为mL50.00劲度系数mNk/408。将小球从图示位置,由静止开始释放,小球将沿圆环滑动并通过最低点C。已知弹簧的弹性势能221kxEP,重力加速度2/10smg,求小球经过C点的速度Cv的大小。解析:设C处为重力势能的零势面,由机械能守恒定律得:2020)2(2121)60cos2(LRkmvRRmgc将已知量代入上式解得:smvc/3五、卫星的变轨道问题例6利用以下信息:地球半径为R,地球表面的重力加速度为g,以无穷远处为零势能面,距离地心为r,质量为m的物体势能为rGMmEP(其中M为地球质量,G为万有引力恒量),求解下列问题:某卫星质量为m,在距地心为2R的轨道上做圆周运动。在飞行的某时刻,卫星向飞行的相反方向弹射出质量为m)347(的物体后,卫星做离心运动。若被弹射出的物体恰能在原来轨道上做相反方向的匀速圆周运动,则卫星的飞行高度Mm图4ROR600图5COAB6变化多少?解析:设卫星在距地心为2R的轨道上运行时速率为V0,则有RvmRGMm2)2(202………………①若设卫星将小物体反向弹出后的瞬时速率为V1,由动量守恒定律得:010)347()347(mvvmmmv………………②如果卫星在离地心较远轨道r上,运行的速率用V2表示,则有rvmrGMm222``………………③由于卫星做离心运动后遵守系统机械能守恒定律,故有rGMmvmRGMmvm``212``212221………………④解①②③④得:Rr3,显然卫星飞行高度的变化量RRrh2习题1、如图5-3-15所示,质量相等的甲、乙两小球从一光滑直角斜面的顶端同时由静止释放,甲小球沿斜面下滑经过a点,乙小球竖直下落经过b点,a、b两点在同一水平面上,不计空气阻力,下列说法中正确的是()A.甲小球在a点的速率等于乙小球在b点的速率B.甲小球到达a点的时间等于乙小球到达b点的时间C.甲小球在a点的机械能等
本文标题:机械能守恒(系统)精讲精练(吐血整理)
链接地址:https://www.777doc.com/doc-1350355 .html