您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 二次函数基本概念-图像及性质
二次函数基本概念,图像及性质定义:一般地,如果cbacbxaxy,,(2是常数,)0a,那么y叫做x的二次函数.函数2yaxbxc的结构特征:2.二次⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵abc,,是常数,a是二次项系数,b是一次项系数,c是常数项.3.二次函数的基本形式(1)二次函数基本形式:2yax的性质:a的绝对值越大,抛物线的开口越小。(2)2yaxc的性质:上加下减。a的符号开口方向顶点坐标对称轴性质0a向上00,y轴0x时,y随x的增大而增大;0x时,y随x的增大而减小;0x时,y有最小值0.0a向下00,y轴0x时,y随x的增大而减小;0x时,y随x的增大而增大;0x时,y有最大值0.a的符号开口方向顶点坐标对称轴性质0a向上0c,y轴0x时,y随x的增大而增大;0x时,y随x的增大而减小;0x时,y有最小值c.yxO(3)2yaxh的性质:结论:左加右减。(4)2yaxhk的性质:4.二次函数由特殊到一般,可分为以下几种形式:①2axy;②kaxy2;③2hxay;④khxay2;⑤cbxaxy2.0a向下0c,y轴0x时,y随x的增大而减小;0x时,y随x的增大而增大;0x时,y有最大值c.a开口方向顶点坐标对称轴性质0a向上0h,X=hxh时,y随x的增大而增大;xh时,y随x的增大而减小;xh时,y有最小值0.0a向下0h,X=hxh时,y随x的增大而减小;xh时,y随x的增大而增大;xh时,y有最大值0.a的符号开口方向顶点坐标对称轴性质0a向上hk,X=hxh时,y随x的增大而增大;xh时,y随x的增大而减小;xh时,y有最小值k.0a向下hk,X=hxh时,y随x的增大而减小;xh时,y随x的增大而增大;xh时,y有最大值k.5.二次函数图像与性质:函数二次函数)0,,(2acbacbxaxy是常数,图像a0a0yy函数解析式开口方向对称轴顶点坐标2axy当0a时开口向上当0a时开口向下0x(y轴)(0,0)kaxy20x(y轴)(0,k)2hxayhx(h,0)khxay2hx(h,k)cbxaxy2abx2(abacab4422,)性质(1)抛物线开口向上,并向上无限延伸;(2)对称轴是x=ab2,顶点坐标是(ab2,abac442);(3)在对称轴的左侧,即当xab2时,y随x的增大而减小;在对称轴的右侧,即当xab2时,y随x的增大而增大,简记左减右增;(4)抛物线有最低点,当x=ab2时,y有最小值,abacy442最小值(1)抛物线开口向下,并向下无限延伸;(2)对称轴是x=ab2,顶点坐标是(ab2,abac442);(3)在对称轴的左侧,即当xab2时,y随x的增大而增大;在对称轴的右侧,即当xab2时,y随x的增大而减小,简记左增右减;(4)抛物线有最高点,当x=ab2时,y有最大值,abacy442最大值6.用待定系数法求二次函数的解析式(1)一般式:cbxaxy2.已知图像上三点或三对x、y的值,通常选择一般式.(2)顶点式:khxay2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x轴的交点坐标1x、2x,通常选用交点式:21xxxxay.7.求抛物线的顶点、对称轴的方法(1)公式法:abacabxacbxaxy442222,∴顶点是),(abacab4422,对称轴是直线abx2.(2)配方法:运用配方的方法,将抛物线的解析式化为khxay2的形式,得到顶点为(h,k),对称轴是直线hx.8.二次函数cbxaxy2中,cba,,的作用(1)a决定开口方向及开口大小,这与2axy中的a完全一样.(2)b和a共同决定抛物线对称轴的位置.由于抛物线cbxaxy2的对称轴是直线abx2,(3)c的大小决定抛物线cbxaxy2与y轴交点的位置.9.二次函数与x轴的交点情况判定:①有两个交点0抛物线与x轴相交;②有一个交点(顶点在x轴上)0抛物线与x轴相切;③没有交点0抛物线与x轴相离.10教材分析课时规划教学目标分析教学思路
本文标题:二次函数基本概念-图像及性质
链接地址:https://www.777doc.com/doc-1351017 .html