您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 《分式运算》练习题及答案
分式运算练习一、填空题1.计算:__________x2yyyx2x2.2.计算:____________1a1aa2.3.计算:______________1x1x2xx11122.4.计算:______________a6a532a3a322.5.计算:________________)1x(11x11x12.6.若01x4x2则______________x1x22.7.若x+y=-1,则_______________xy2yx22.8.________________baaba2.二、选择题9.3x时,代数式x1x21xx1xx的值是()A.213B.231C.233D.23310.化简2222aabbababba的结果是()A.abba22B.baC.baD.abb2a2211.下面的计算中,正确的是()A.21xx1x11xB.2244222322abbababababaC.1baabbababammmmmmm3m3m2m2D.0)1x(x)1x(x)x1(x)1x(x666612.化简分式abbaabba22的结果是()A.10B.ba2C.ab2D.ab213.计算1x111x112的结果是()A.1B.x+1C.x1xD.1x1三、解答题14.化简:4x24x216x42.15.化简:x1x3x2x1xx3x1x2222.16.已知23y32x,,求yxyx)yx(2244的值.17.先化简代数式)nm()nm(mn2nmnmnmnm22222,然后请你自取一组a、b的值代入求值(所取a、b的值要保证原代数式有意义).18.观察下列关系式:212111,613121,1214131,…请你观察上列各式并归纳出一般结论.19.已知实数x、y满足04y2x32|1yx2|,求代数式2222y4xy4xyxy2xyx1的值.20.已知122y22x,,求2yxy2xyxyxyx2222.参考答案:一、1.12.1a13.1x1x324.)3a)(1a(65.1x2x26.147.218.bab2二、9.B10.B11.C12.C13.C三、14.16122x.15.3x1.16.2)yx)(yx(,48.17.m+n.18.)1n(n11n1n1(n为整数且n≥1).19.5y2x,yxy3原式715.20.yxy4原式20212.
本文标题:《分式运算》练习题及答案
链接地址:https://www.777doc.com/doc-1358764 .html