您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 经典特殊的平行四边形讲义+家教专用
1学科教师辅导讲义教学内容一、知识回顾矩形、菱形、正方形1、菱形的性质:①菱形的四条边都相等.②菱形的对角线互相垂直,并且每条对角线平分一组对角.③具有平行四边形所有性质.2.菱形的判定:①对角线互相垂直的平行四边形是菱形.②一组邻边相等的平行四边形是菱形.③四条边都相等的四边形是菱形.3.矩形的性质:①矩形的四个角都是直角.②矩形的对角线相等.③矩形具有平行四边形的所有性质.4.矩形的判定:①有一个角是直角的平行四边形是矩形.②对角线相等的平行四边形是矩形.③有三个角是直角的四边形是矩形.5.正方形的性质:①正方形的四个角都是直角,四条边都相等.②正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角.6.正方形的判定:①有一个角是直角的柳是正方形.②有一组邻边相等的矩形是正方形.③对角线相等的菱形是正方形.④对角线互相垂直的矩形是正方形.课前练习:1.已知平行四边形ABCD的周长是28cm,CD-AD=2cm,那么AB=______cm,BC=______cm.2.菱形的两条对角线分别是6cm,8cm,则菱形的边长为_____,一组对边的距离为_____3.在菱形ABCD中,∠ADC=120°,则BD:AC等于________4.已知正方形的边长为a,则正方形内任意一点到四边的距离之和为_____.5.矩形ABCD被两条对角线分成的四个小三角形的周长之和是86cm,对角线长是13cm,则矩形ABCD的周长是6.如图,将一张等腰直角三角形纸片沿中位线剪开,可以拼出不同形状的四边形,请写出其中两个不同的四边形的名称:.7.如图,有一张面积为1的正方形纸片ABCD,M,N分别是AD,BC边的中点,将C点折叠至MN上,落在P点的位置,折痕为BQ,连结PQ,则PQ8.如图,梯形ABCD中,1ADBCABCDAD∥,,60B,直线MN为梯形ABCD的对称轴,P为MN上一点,那么PCPD的最小值为.9.如图,OBCD是边长为1的正方形,∠BOx=60°,则点C的坐标为________10.如图,把正方形ABCD沿着对角线AC的方向移动到正方形DCBA的位置,它们的重叠部分的面积是正方形ABCD面积的一半,若AC=2,则正方形移动的距离AA是MDQCNBA2DCBA第3题图DCBA二、例题讲解矩形例1.如图,已知矩形ABCD的纸片沿对角线BD折叠,使C落在C’处,BC’边交AD于E,AD=4,CD=2(1)求AE的长(2)△BED的面积巩固练习:1.如图,矩形ABCD中,AD=9,AB=3,将其折叠,使其点D与点B重合,折痕为EF求DE和EF的长。2.如图,已知将矩形ABCD沿EF所在直线翻折,使点A与C重合,AB=6,AD=8求折痕EF的长例2:如图,矩形ABCD中,E是BC上一点,且AE=AD,又DF⊥AE,F为垂足。求证:EC=EFADFBECC’DABCEFDABCEC’EFABCDDAOCBCBADMN3巩固练习1.矩形的相邻两边的长分别是12㎝和5㎝,则矩形的对角线的长是。2.若矩形的面积是363cm2,两条对角线相交成60º锐角,则此矩形的两邻边长分别是㎝和㎝。3.将两个同样的长为3厘米,宽为2厘米的长方形重新拼一个长方形,则此长方形的对角线长为______厘米。4.如图,矩形ABCD中,AB=2BC,点E在DC上,AE=AB。求∠CEB的度数。AEDBC5.如图,矩形ABCD的对角线AC、BD交于点O,AE⊥BD,BE⊥AC且AE、BE交于点E。求证:AE=BEEDCOOOOOAB菱形例3.如图,菱形ABCD中,∠B=60°,将三角板中60°的顶点与点A重合,并绕点A旋转,三角板的两边与BC,CD分别相交于E、F,求证AE=AFEBAFCD4例4.如图,△ABC中,AB=AC,点D是BC的中点,DE⊥AC于E,DF⊥AB于F,FG⊥AC于G,EH⊥AB于H,FG交EH于点K。求证:四边形DEKF是菱形。AHGKFEBDC巩固练习:1.已知菱形的两条对角线的长分别为6和8,那么这个菱形的周长是。2.菱形的周长是52㎝,一条对角线长是10㎝,则这个菱形的面积是cm2。3.菱形的面积为6cm2,一条对角线长6cm,则另一条对角线长___cm。4.已知菱形的两条对角线长之比为3:2,面积等于12cm2,则该菱形的周长为___cm。5.如图,Rt△中,CH是斜边AB上的高,AD是∠A的平分线,AD与CH相交于点F,DE⊥AB,E为垂足。求证:四边形CDEF是菱形。CDFBEHA6.如图,已知在菱形ABCD中,AC与BD交于点O,且AE=OD,AE⊥CD,求∠CAE的度数ABDCE5正方形例5.如图,在正方形ABCD中,已知AE⊥BF,垂足为P,AE与CD交于点E,BF与AD交于点F,求证:AE=BF巩固练习:1.已知正方形ABCD中,对角线AC=4㎝,则此正方形的周长=㎝,面积=cm2。2.如图,正方形ABCD中点P是边AB上的一个动点,且CQ=AP,PQ与CD相交于点E,当P在边AB上运动时,试判断△PDQ的形状并证明。三、总结反思四、课后练习一.矩形1.矩形的性质:(1)矩形的四个角都是_____角.(2)矩形的对角线互相平分并且_______.2.如图1:四边形ABCD是矩形.(已知)BO=OD=21BD,CO=OA=21CA,BD=CA.()BO=_____=_____=______,图中共有______个等腰三角形,DABCPEFDABCPEQ6_____个直角三角形,图中与∠1相等的角有_______个(∠1除外).3.如图1,矩形ABCD中,∠AOD=1200,AB=3cm,则∠2=____度,AC=______cm,BC=______cm,S矩形ABCD=_____cm2.4.如图2,矩形ABCD中,∠AOB=600,AC==10cm,则∠2=____度,AB=______cm,BC=______cm,S矩形ABCD=_____cm2.5.如图3,在矩形ABCD中,DE⊥AC于E,∠ADE∶∠EDC=2∶1,则∠ADE=________度,∠1=_____度,∠2=______度,∠3=_____度.6.证明一个四边形是矩形的方法有:(1)先证明它有____个角是直角.(2)先证明它是平行四边形,再证明它有_____个角是直角.(3)先证明它是平行四边形,再证明对角线________.7.在直角三角形中,斜边上的中线等于__________的一半.8.如图4,∠ACB=900,D是斜边AB的中点,CD=5cm,BC=8cm,则SΔABC=____.9.如图5,在四边形ABCD中,∠ABC=ADC=900,AE=EC,BF=FD.求证:EF⊥BD.10.如图6,矩形ABCD的对角线相交于O,E、F、G、H分别是OA、OB、OC、OD的中点.求证:四边形EFGH是矩形.11.已知:如图7,在矩形ABCD中,PA=PD.求证:PB=PC.12.如图8,在矩形ABCD中,DE平分∠ADC,∠2=150.(1)求证:ΔDOC是等边三角形.(2)求∠5的度数.二、菱形1.菱形的性质:(1)菱形的四条边_______.(2)菱形的两条对角线互相_________平分,并且每条对角线平分一组______角.(3)菱形的面积等于两对角线的积的___.2.菱形的两条对角线将菱形分成___个_________直角三角形.3.如图9,菱形ABCD中,对角线AC=10cm,BD=24cm,则菱形ABCD的面积为___________cm2,AO=______cm,BO=_______cm,AB=________cm,菱形ABCD的周长为________cm.74.如图10,菱形ABCD中,∠ABC∶∠BAD=1∶2,AB=2,则∠ABC=________度,∠1=_______度,AO=________,BO=_______,菱形ABCD的面积为__________.5.如图11,菱形ABCD的面积为50cm2,∠B=300,AE是BC边的高,则BC=__________cm.[提示:S菱形=底×高.设AE=x,则BA=?x,BC=?x]6.已知菱形的周长为52cm,一条对角线是24cm,则另一对角线为_____cm,它的面积为_______cm2.7.证明一个四边形是菱形的方法有:(1)先证明它的四条边______.(2)先证明它是平行四边形,再证明一组邻边________.(3)先证明它是平行四边形,再证明对角线______________.8.如图12,在四边形ABCD中,AD∥BC,EF垂直平分BD.求证:四边形BEDF是菱形.9.如图13,矩形ABCD的对角线相交于O,DE∥CO,CE∥DO.求证:DC⊥EO.10.如图14,ΔABC中,∠ACB=900,AE平分∠BAC,CD⊥AB,EF⊥⊥AB.求证:(1)ΔAGC≌ΔAGF.(2)四边形CEFG是菱形.11.求证:一条对角线平分一个内角的平行四边形是菱形.三、正方形1.正方形的性质:(1)正方形的四个角都是________,四条边________.(2)正方形的两条对角线_______,并且互相垂直_________,每条对角线平分一组______角.82.正方形的对角线与它的边所成的角是______度.3.正方形形的两条对角线将正方形分成___个全等的___________________三角形.4.正方形的面积等于两条对角线的积的_________;正方形的面积等于边长的__________.5.已知正方形的一条对角线的长为4cm,则它的面积为________cm2,边长为_______cm.6.如图16,正方形ABCD中,AC=CE,则∠1=________度,∠E=______度,∠2=________度.7.对角线相等的______形是正方形;对角线互相垂直的_____形是正方形;对角线互相垂直_______并且_______的四边形是正方形.8.如图17,正方形ABCD中,CE=CF.求证:DG⊥BF.9.如图18,在正方形ABCD内作等边三角形AEF,使E是BC上,F在CD上.(1)求证:CE=CF.(2)求∠BAE的度数.10.如图19,F是正方形ABCD的边CD的中点,AE=DC+CE.求证:AF平分∠DAE.
本文标题:经典特殊的平行四边形讲义+家教专用
链接地址:https://www.777doc.com/doc-1388181 .html