您好,欢迎访问三七文档
中考数学知识点归纳章节知识点知识点概述相关公式中考占比分数实数实数分类在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等;3分倒数、相反数、绝对值倒数:倒数等于本身的数是1和-1。零没有倒数。相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零。绝对值:一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。倒数:如果a与b互为倒数,则有ab=1,反之亦成立。相反数:如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。绝对值:零的绝对值时它本身,若|a|=a,则a≥0;若|a|=-a,则a≤0。3分平方根、算数平方根和立方根平方根:如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。立方根:如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)。一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:33aa,这说明三次根号内的负号可以移到根号外面。平方根:一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。正数a的平方根记做“a”。算术平方根:正数和零的算术平方根都只有一个,零的算术平方根是零。a(a0)0aaa2;注意a的双重非负性:-a(a0)a03-10分科学记数法、有效数字科学记数法:把一个数写做na10的形式,其中101an是整数,这种记数法叫做科学记数法。有效数字:一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。科学记数法形式:na10(101a)3-6分实数大小比较(数轴、常用方法)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意规定的三要素缺一不可)。常用方法:(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比较(3)求商比较法(4)绝对值比较法:设a、b是两负实数,则baba。(5)平方法:设a、b是两负实数,则baba22。求差比较:,0baba设a、b是实数,,0babababa0求商比较:设a、b是两正实数,;1;1;1babababababa3分实数的运算实数的运算顺序:先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。1、加法交换律abba2、加法结合律)()(cbacba3、乘法交换律baab4、乘法结合律)()(bcacab5、乘法对加法的分配律acabcba)(做题的基础,分数较大章节知识点知识点概述相关公式中考占比分数代数式整式概念及运算法则代数式:用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。单项式和多项式统称为整式。注意:(1)单项式乘单项式的结果仍然是单项式。(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。(5)公式中的字母可以表示数,也可以表示单项式或多项式。(6)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。整式的加减法:(1)去括号;(2)合并同类项。整式的乘法:),(都是正整数nmaaanmnm),(都是正整数)(nmaamnnm)()(都是正整数nbaabnnn22))((bababa2222)(bababa2222)(bababa整式的除法:)0,,(anmaaanmnm都是正整数),0(1);0(10为正整数paaaaapp3分单项式单项式:只含有数字与字母的积的代数式叫做单项式。系数:单项式中的数字因数。次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。注意:(1)单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示。(2)指数是1时省略不写,不能误认为0.系数的指数不能相加作为单项式的次数。如:ba2314,这种表示就是错误的,应写成ba2313。如:cba235是6次单项式。3分多项式多项式:几个单项式的和叫做多项式。项:每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。次数:多项式中次数最高的项的次数,叫做这个多项式的次数。用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。3分同类项同类项:所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项做题的基础去括号法则去括号法则:(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。因式分解因式分解:把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提取公因式。(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因式;4项式及4项式以上的可以尝试分组分解法分解因式。(3)分解因式必须分解到每一个因式都不能再分解为止。因式分解的常用方法:(1)提公因式法:)(cbaacab(2)运用公式法:))((22bababa222)(2bababa222)(2bababa(3)分组分解法:))(()()(dcbadcbdcabdbcadac(4)十字相乘法:))(()(2qapapqaqpa11分分式分式的概念:一般地,用A、B表示两个整式,A÷B就可以表示成BA的形式,如果B中含有字母,式子BA就叫做分式。其中,A叫做分式的分子,B叫做分式的分母。分式和整式通称为有理式。分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。分式的运算法则:;;bcadcdbadcbabdacdcba);()(为整数nbabannn;cbacbcabdbcaddcba8-10分二次根式二次根式:式子)0(aa叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。最简二次根式:若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。二次根式混合运算:二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。二次根式的相关性质:(1))0()(2aaa)0(aa(2)aa2)0(aa(3))0,0(babaab(4))0,0(bababa做题的基础章节知识点知识点概述相关公式中考占比分数方程(组)方程概念方程:含有未知数的等式叫做方程。方程的解:能使方程两边相等的未知数的值叫做方程的解。等式的性质:(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。6分一元一次方程一元一次方程:只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,一元一次方程解题步骤:①去分母②去括号③移项④合并同类项⑤化系数为一一元一次方程标准形式:)为未知数,(0ax0baxa是未知数x的系数,b是常数项。二元(三元)一次方程组二元一次方程:含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程。二元一次方程的解:使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。二元一次方程组:两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组。二元一次方程组的解:使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。二元一次方正组的解法:(1)代入消元法(2)加减消元法三元一次方程:把含有三个未知数,并且含有未知数的项的次数都是1的整式方程。三元一次方程组:由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组。8-10分分式方程分式方程:分母里含有未知数的方程叫做分式方程。分式方程的一般方法:解分式方程的思想是将“分式方程”转化为“整式方程”。它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。分式方程的特殊解法:换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。8分一元二次方程概念一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。一元二次方程的一般形式:)0(02acbxax,特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中2ax叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。6分一元二次方程解法直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。配方法:配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。公式法:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。因式分解法:利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。直接开平方法:适用于解形如bax2)(的一元二次方程。根据平方根的定义可知,ax是b的平方根,当0b时,bax,bax,当b0时,方程没有实数根。配方法:配方法是根据完全平方公式222)(2bababa,把公式中的a看做未知数x,并用x代替,则有222)(2bxbbxx。求根公式:一元二次方程)0(02acbxax的求根公式:)04(2422acbaacbbx10分根的判别式根的判别式:一元二次方程)0(02acbxax中,acb42叫做一元二次方程)0(02acbxax的根的判别式,通常用“”来表示,即acb42(1)、若acb420,则方程有两个不相等的实数根。(2)、若acb42=0,则方程有两个相等的实数根。(3)、若acb420,则方程没有实数根。(4)、若acb42≥0,则方程有实数根。3分根与系数关系根与系数关系(韦达定理):对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。如果方程)0(02acbxax的两个实数根是21xx,,那么abxx21,acxx213分章节知识点知识点概述相关公式中考占比分数不等式(组)不等式概念不等式:用不等号表示不等关系的式子,叫做不等式。不等式的解:对于一个含有未知数的不
本文标题:中考数学知识点归纳
链接地址:https://www.777doc.com/doc-1393940 .html