您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 第一讲---17.1一元二次方程的概念(公开课)
某小区住宅设计,准备在每两幢楼房之间,开辟周长为900米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?问题1:解:设长方形绿地的宽为x米,得900102xx整理可得:900204x……(1)变式:某小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?解:设长方形绿地的宽为x米,得90010xx整理可得:900102xx……(2)思考1:方程(2)与一元一次方程的区别在哪里?思考2:方程(1)和方程(2)有什么共同点呢?思考3:你能类比一元一次方程给方程(2)起个名称吗?思考4:根据以上讨论的结果,你能说出什么方程是一元二次方程吗?只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程。900204x900102xx一元二次方程的概念•像这样的等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程叫做一元二次方程。③都是整式方程;①只含一个未知数;②未知数的最高次数是2.即:一元二次方程的共同特点:(默1)一般地,任何一个关于x的一元二次方程都可以化为的形式,我们把(a,b,c为常数,a≠0)称为一元二次方程的一般形式.20axbxc20axbxc为什么要限制a≠0,b,c可以为零吗?ax2+bx+c=0(a≠0)b是一次项系数一元二次方程的一般形式a是二次项系数常数项二次项一次项“=”的右边必须整理成0.(默2)ax2+bx=0(a≠0,b≠0)一元二次方程的一般形式ax2+bx+c=0(a≠0)完全的一元二次方程ax2+bx+c=0(a≠0,b≠0,c≠0)不完全的一元二次方程ax2+c=0(a≠0,c≠0)ax2=0(a≠0)一元一次方程一元二次方程一般式相同点不同点一元一次方程与一元二次方程有什么区别与联系?ax=b(a≠0)ax2+bx+c=0(a≠0)都是整式方程,只含有一个未知数未知数最高次数是1未知数最高次数是2整式方程例1:判断下列方程是否为一元二次方程?212(4)0xx(1)x2+x=36(2)x3+x2=36(3)x+3y=36(5)x+1=063)6(2x22)32(14)7(xx062))(8(2xx判断一个方程是否是一元二次方程,关键是要将方程化为一般式,然后根据一元二次方程必须同时满足的三个条件进行判别。(默3)(默3)下列方程中哪些是一元二次方程?05212xx)(013422yx)(032cbxax)(0214)()(xx0152aa)(1262))((m是一元二次方程的有:____________)(1)(4)(6可能为0是分式2(7)5xx2(8)2321xxx是二次根式61.x化简为:例题讲解•[例2]将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数:•(1)例题讲解)2(5)1(3xxx105332xxx0105332xxx02x(2)解:010832xx10常数项为-88,其系数为-一次项:-x332,其系数为二次项:x12、系数为二次项:x00、系数为一次项:0常数项:二次项、二次项系数、一次项、一次项系数、常数项都是包括符号的ax2+bx+c=0注意:要确定一元二次方程的系数和常数项,必须先将方程化为一般形式二次项系数一次项系数常数项(a≠0)在写一元二次方程的一般形式时,通常按未知数的次数从高到低排列,即先写二次项,再写一次项,最后是常数项。例3.把下列方程化为一元二次方程的形式,并写出它的二次项系数、一次项系数和常数项:方程一般形式二次项系数一次项系数常数项3x2=5x-1(x+2)(x-1)=64-7x2=03x2-5x+1=0x2+x-8=03-5+11+1-83-5111-87x2-4=070-4一元二次方程二次项系数一次项系数常数项42x2+x+4=021-4y2+2y=0-4203x2-x-1=03-1-1抢答:4x2-5=040-5m-31-m-m3x(x-1)=5(x+2)(m-3)x2-(m-1)x-m=0(m≠3)3-8-10方程(2a-4)x2-2bx+a=0,①在什么条件下此方程为一元二次方程?②在什么条件下此方程为一元一次方程?解:①由题意得,2a-4≠0,解之得a≠2∴当a≠2时是一元二次方程;②2a-4=0a=2-2b≠0b≠0由题意得,解之得∴当a=2且b≠0时是一元一次方程.例4:(默4)例2:当m取什么值时,关于x的方程010222mxxmm为一元二次方程。解:根据题意得:222m42m2m又∵02m∴2m∴2m∴当2m时,该方程是一元二次方程。02222mm5(默5)1.关于x的方程(k-3)x2+2x-1=0,当k时,是一元二次方程.2.关于x的方程(k2-1)x2+2(k-1)x+2k+2=0,当k时,是一元二次方程.当k时,是一元一次方程.≠3≠±1=-1练习巩固4.当m为何值时,方程42(1)2750mmxmx是关于x的一元二次方程.+104-2=2mmm=13.下列方程中,无论a为何值,总是关于x的一元二次方程的是()A.(2x-1)(x2+3)=2x2-aB.ax2+2x+4=0C.ax2+x=x2-1D.(a2+1)x2=0D例6:已知关于x的一元二次方程(m-1)x2+3x-5m+4=0有一根为2,求m.分析:一根为2,即x=2,只需把x=2代入原方程.三,一元二次方程解的概念方程解的定义是怎样的呢?能使方程左右两边相等的未知数的值就叫方程的解.一元二次方程的解也叫做一元二次方程根.(默6)0456)1(4mm6m已知关于x的一元二次方程x2+ax+a=0的一个根是3,求a的值。解:由题意得把x=3代入方程x2+ax+a=0得,32+3a+a=09+4a=094a4a=-9练一练已知关于x的一元二次方程ax2+bx+c=0(a≠0)一个根为1,求a+b+c的值.解:由题意得2110abc0abc即思考:若a+b+c=0,你能通过观察,求出方程ax2+bx+c=0(a≠0)一个根吗?解:由题意得2110abc即0abc∴方程ax2+bx+c=0(a≠0)一个根是1拓展:若a-b+c=0,你能通过观察,求出方程ax2+bx+c=0(a≠0)一个根吗?1.本节学习的数学知识是:2、学习的数学思想方法是3、如何理解一元二次方程的一般形式20axbxc(a≠0)?(1)(2)(1)(2)一元二次方程的概念一元二次方程的一般形式转化、建模思想。(a≠0)是成为一元二次方程的必要条件找一元二次方程的二次项、一次项系数及常数项要先化为一般式
本文标题:第一讲---17.1一元二次方程的概念(公开课)
链接地址:https://www.777doc.com/doc-1394262 .html