您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 交集、并集(1)课件
课题:§1.3交集、并集(1)学习目标学习要求:•理解交集与并集的概念;•会求两个已知集合交集、并集;•认识由具体到抽象的思维过程;•初步运用数形结合策略解题。学习重点:•理解交集与并集概念;•数形结合运用;•符号之间区别与联系。教学过程:一、复习回顾二、学习新课三、课堂练习四、课时小结五、课后作业一、复习回顾子集、补集的有关概念。二、学习新课观察上面五个图(图1—5)•图(1)给出了两个集合A、B;•图(2)阴影部分是A与B公共部分;•图(3)阴影部分是由A、B组成;•图(4)集合A是集合B的子集;•图(5)集合B是集合A的子集;图(2)阴影部分叫集合A与B的交集;图(3)阴影部分叫集合A与B的并集。ABABABBAAB交集定义AB并集定义AB例题解析(师生共同活动)例1:设A={x|x-2},B={x|x3},求A∩B,A∪B.x-5-4-3-2-1012345分析:涉及不等式有关问题,利用数形结合即运用数轴是最佳方案。解:在数轴上作出A、B对应部分如图A∩B={x|x-2}∩{x|x3}={x|-2x3}A∪B={x|x-2}∪{x|x3}=RAB例题解析(师生共同活动)例2:设A={x|x是等腰三角形},B={x|x是直角三角形},求A∩B.解:A∩B={x|x是等腰三角形}∩{x|x是直角三角形}={x|x是等腰直角三角形}.ABA∩B例题解析(师生共同活动)例3:设A={4,5,6,8},B={3,5,7,8},求A∪B.分析:运用文恩解答该题.解:∵A={4,5,6,8},B={3,5,7,8}.∴A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.4,6,8,5,3,7例题解析(师生共同活动)例4:设A={x|x是锐角三角形},B={x|x是钝角三角},求A∪B.解:A∪B={x|x是锐角三角形}∪{x|x是钝角三角形}={x|x是斜三角形}.AB例5:设A={x|-1x2},B={x|1x3},求A∩B,A∪B.分析:利用数轴,将A、B分别表示出来,则阴影部分即为所求。解:A∩B={x|-1x2}∩{x|1x3}x-5-4-3-2-1012345BAA∪B={x|-1x2}∪{x|1x3}={x|1x2}.={x|-1x3}.三、课堂练习:课本P12,练习1—5.补充练习:已知M={1},N={1,2},设A={(x,y)|x∈M,y∈N},B={(x,y)|x∈N,y∈M},求A∩B,A∪B。四、课时小结理解交集与并集的概念在求解问题过程中,充分利用数轴、图示图。五、课后作业:课本P13,习题1.31—6(书面表达1、3、5);.预习内容:课本P12—P13.预习提纲:(1)对于两组集合A与ø、A与B其交集及并集的运算结果怎样,你能否表示出来?(2)集合的有关术语和符号又增添哪些?2019POWERPOINTSUCCESS2019/10/72019THANKYOUSUCCESS2019/10/7
本文标题:交集、并集(1)课件
链接地址:https://www.777doc.com/doc-1398990 .html