您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 六年级长方体正方体练习(含解析)
第1页(共26页)六年级长方体正方体练习一.选择题(共7小题)1.一个冰箱从里面量长5分米,宽5分米,高4分米,装满水后水箱的()是100升.A.容积B.体积C.重量2.如图:将如图纸片折起来可以做成一个正方体.这个正方体的3号面的对面是()号面.A.2B.3C.4D.13.下列图形都是由相同的小正方形组成,哪一个图形不能折成正方体?()A.B.C.4.如图,有一个无盖的正方体纸盒,下底标有字母“M”,将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.5.把一个长3cm、宽4cm、高5cm的长方体截成两个长方体,表面积最多增加()cm2.A.24B.30C.406.一个汽油箱长60厘米,宽20厘米,高20厘米,这个油箱可盛汽油()升.A.240000B.240C.24D.0.247.如图,用丝带捆扎一种礼品盒,结头处长25cm,要捆扎这种礼品盒,准备()第2页(共26页)分米的丝带比较合理.A.10B.15C.20D.22.5二.填空题(共10小题)8.棱长总和是72cm的正方体,表面积是,体积是.9.如果正方体的棱长扩大到原来的3倍,那么它的表面积就扩大到原来的倍.10.用铁丝焊接一个棱长是5厘米的正方体框架,至少需要铁丝厘米.如果用白纸贴满正方体的各个面,至少要用白纸平方厘米;这个正方体的体积是立方厘米.11.长方形的右侧面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的表面积是平方厘米.12.一个长方体,如果宽增加2厘米,就变成一个正方体,这时表面积比原来增加32平方厘米.原来长方体的表面积是平方厘米,体积是立方厘米.13.一个正方体木块,把它割成2个长方体后.表面积增加了18m2,这个木块原来的表面积是,体积是.14.一个棱长4dm的正方体钢坯的体积是dm3,如果把它锻造成一个底面积是20dm2的长方体,这个长方体的高是dm.15.一根长2米的长方体钢材,沿横截面截成两段后,表面积增加了0.8平方米,这段长方体钢材的体积是立方分米.16.用一根24分米长的铁丝围成一个最大的正方体形状的框架,这个正方体的体积是立方米.17.一根60厘米长的铁丝,如果做一个长8厘米、宽5厘米的长方体模型,这个长方体的高是厘米,这个长方体的表面积是平方厘米,体积是第3页(共26页)立方厘米.三.判断题(共5小题)18.正方体的棱长扩大到原来的2倍,它的表面积也就扩大到原来的2倍..(判断对错)19.棱长为6cm的正方体的体积与表面积相等..(判断对错)20.底面周长是8分米的正方体,它的表面积是24平方分米..(判断对错)21.如果长方体的长、宽、高都扩大3倍,则它的体积扩大3倍.(判断对错)22.把一个长方体锻造成一个正方体铁块,形状变了,但体积不变.(判断对错)四.解答题(共10小题)23.如图,如果把这个长方体完全沉没于盛满水的水槽中,会有多少水溢出来?如果要包装这个盒子,至少需要多少平方厘米的包装纸?(单位:厘米)24.求出如图中长方体的体积和表面积.(单位:米)25.看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)第4页(共26页)26.一间平顶教室,长是8.5米,宽6米,高4.2米.教室的门窗和黑板的面积一共有35.8平方米.要粉刷教室的顶面和四面墙壁,粉刷的面积有多少平方米?27.一个长方形的游泳池,从里面量长50米,宽20米,高2米,平均水深1.5米.粉刷它的四壁和地面,粉刷面积是多少平方米?28.一块长32厘米、宽25厘米的铁皮,从四个角各切掉一个边长为3厘米的正方形,然后做成盒子.这个盒子用了多少铁皮?它的容积有多少立方厘米?(如图)29.有一个长方体,从上面截下一个高是2厘米的长方体后正好得到一个正方体,如图,正方体的表面积比原长体的表面积减少了48平方厘米,求原来长方体的体积.30.一个长方体水箱,从里面量长是40cm,宽是35cm,水箱中浸没一个钢球(水末溢出),水深15cm,取出钢球后,水深12cm.如果每立方分米钢重7.8千克,这个钢球重多少千克?第5页(共26页)31.把棱长为4dm的正方形钢坯熔铸成横截面是边长8cm的正方形的长方体钢条,这个钢条的长是多少分米?32.李老师用一根长56cm的铁丝,做成一个长6cm,宽5cm的长方体框架教具,这个教具的高是多少厘米?第6页(共26页)六年级长方体正方体练习(2)参考答案与试题解析一.选择题(共7小题)1.(2016春•卧龙区校级期中)一个冰箱从里面量长5分米,宽5分米,高4分米,装满水后水箱的()是100升.A.容积B.体积C.重量【考点】AC:长方体和正方体的体积.菁优网版权所有【专题】462:立体图形的认识与计算.【分析】根据容积的意义,某容器所能容纳别的物体的体积叫做这个容器的容积.据此解答即可.【解答】解:根据容积的意义可知:一个木箱装满水后水箱的容积是100升故选:A.【点评】此题考查的目的是理解掌握容积的意义及应用.2.(2016秋•如皋市月考)如图:将如图纸片折起来可以做成一个正方体.这个正方体的3号面的对面是()号面.A.2B.3C.4D.1【考点】8M:正方体的展开图.菁优网版权所有【专题】462:立体图形的认识与计算.【分析】根据正方体展开图的11种特征,属于“1﹣3﹣2”型,折叠成正方体后,1号面与5号面相对,2号面与3号面相对,4号面与6号面相对.【解答】解:如图,第7页(共26页)折叠成正方体后,1号面与5号面相对,2号面与3号面相对,4号面与6号面相对.故选:A.【点评】此题是考查正方体展开图的特征,正方体展开图有11种情况,折叠成正方体后哪些面相对是有规律的,最好是掌握规律,能快速解答此类题.3.(2016春•乐亭县校级月考)下列图形都是由相同的小正方形组成,哪一个图形不能折成正方体?()A.B.C.【考点】8M:正方体的展开图.菁优网版权所有【专题】462:立体图形的认识与计算.【分析】根据正方体展开图的11种特征,选项B不属于正方体展开图,不能折成正方体;选项A和选项C都属于正方体展开图的“1﹣4﹣1”型,都能折成正方体.【解答】解:根据正方体展开图的特征,选项B不能折成正方体;选项B和选项C都能折成正方体.故选:B.【点评】本题主要是考查正方体展开图的特征,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.4.(2015•绵阳)如图,有一个无盖的正方体纸盒,下底标有字母“M”,将其剪开展成平面图形,想一想,这个平面图形是()第8页(共26页)A.B.C.D.【考点】8M:正方体的展开图.菁优网版权所有【专题】462:立体图形的认识与计算.【分析】我们可以对四个选项用排除法,根据正方体展开图的特征,选项D不能折成无盖的正方体纸盒;选项A、B、C都能折成无盖的正方体纸盒,选项B、C中字母“M”都在侧面,只有选项A折成无盖的正方体纸盒,下底标有字母“M”.【解答】解:如图,根据正方体展开图的特征,将其剪开展成平面图形是:故选:A.【点评】此题是考查正方体展开图的特征,四个选项中除D外,其余几个都能折成无盖的正方体盒,关键是看哪个字母“M”在底上.5.(2015•德江县模拟)把一个长3cm、宽4cm、高5cm的长方体截成两个长方体,表面积最多增加()cm2.A.24B.30C.40【考点】AB:长方体和正方体的表面积.菁优网版权所有【专题】12:应用题;33:假设法;462:立体图形的认识与计算.【分析】抓住长方体的切割特点可得,要使增加的表面积最多,则平行于最大面5×4面切割,则表面积就是增加2个5×4面,据此即可解答.【解答】解:5×4×2=20×2第9页(共26页)=40(平方厘米)答:表面积最多能增加40平方厘米.故选:C.【点评】根据长方体切割小长方体的方法,明确表面积增加的2个面是解决本题的关键.6.(2015•徐州模拟)一个汽油箱长60厘米,宽20厘米,高20厘米,这个油箱可盛汽油()升.A.240000B.240C.24D.0.24【考点】AC:长方体和正方体的体积.菁优网版权所有【专题】462:立体图形的认识与计算.【分析】根据长方体的容积(体积)公式:v=abh,把数据代入公式解答.【解答】解:60×20×20=24000(立方厘米),24000立方厘米=24(升),答:这个油桶可以盛汽油24升.故选:C.【点评】此题主要考查长方体的容积(体积)公式的灵活运用,关键是熟记公式,注意:体积单位与容积单位之间的换算.7.(2015秋•射阳县校级期末)如图,用丝带捆扎一种礼品盒,结头处长25cm,要捆扎这种礼品盒,准备()分米的丝带比较合理.A.10B.15C.20D.22.5【考点】8G:长方体的特征.菁优网版权所有【专题】12:应用题;3B:代数方法;462:立体图形的认识与计算.第10页(共26页)【分析】由图形可知:丝带的长度等于长方体的两条长+两条宽+4条高,然后再加上打结用的25厘米就是所需要的长度,列式解答即可.【解答】解:30×2+20×2+25×4+25=60+40+100+25=225(厘米)=22.5(分米答:准备22.5分米的丝带比较合理.故选:D.【点评】此题考查的目的是理解掌握长方体的特征,相对棱的长度相等,关键是弄清如何捆扎的,进而确定是求哪几条棱的长度和.二.填空题(共10小题)8.(2016春•玉林期末)棱长总和是72cm的正方体,表面积是216平方厘米,体积是216立方厘米.【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.菁优网版权所有【专题】462:立体图形的认识与计算.【分析】正方体的12条棱的长度都相等,用棱长总和除以12求出棱长,再根据正方体的表面积公式:s=6a2,体积公式:v=a3,把数据分别代入公式解答.【解答】解:72÷12=6(厘米),6×6×6=216(平方厘米),6×6×6=216(立方厘米),答:这个正方体的表面积是216平方厘米,体积是216立方厘米.故答案为:216平方厘米,216立方厘米.【点评】此题主要考查正方体的表面积公式、体积公式的灵活运用.9.(2016春•克州校级期中)如果正方体的棱长扩大到原来的3倍,那么它的表面积就扩大到原来的9倍.【考点】AB:长方体和正方体的表面积.菁优网版权所有【专题】462:立体图形的认识与计算.第11页(共26页)【分析】根据正方体的表面积公式s=6a2,再根据积的变化规律,积扩大的倍数等于因数扩大倍数的乘积,由此解答.【解答】解:根据正方体的表面积公式s=6a2,一个正方体的棱长扩大到原来的3倍,表面积扩大到原来的3×3=9倍.答:它的表面积扩大到原来的9倍.故答案为:9.【点评】此题主要根据正方体表面积计算方法和积的变化规律解决问题.10.(2016秋•玄武区期末)用铁丝焊接一个棱长是5厘米的正方体框架,至少需要铁丝60厘米.如果用白纸贴满正方体的各个面,至少要用白纸150平方厘米;这个正方体的体积是125立方厘米.【考点】AB:长方体和正方体的表面积;8G:长方体的特征;AC:长方体和正方体的体积.菁优网版权所有【专题】462:立体图形的认识与计算.【分析】根据正方体的棱长总和=棱长×12,正方体的表面积公式:S=6a2,体积公式:v=a3,把数据分别代入公式解答.【解答】解:5×12=60(厘米);5×5×6=25×6=150(平方厘米);5×5×5=125(立方厘米);答:至少需要铁丝60厘米,至少要用白纸150平方厘米,它的体积是125立方厘米.故答案为:60、150、125.【点评】此题主要考查正方体的棱长总和公式、表面积公式、体积公式的灵活运用,关键是熟记公式.11.(2016春•扬州校级期末)长方形的右
本文标题:六年级长方体正方体练习(含解析)
链接地址:https://www.777doc.com/doc-1402005 .html