您好,欢迎访问三七文档
学习和生活带来一点帮助。下面7个问题,至少需要7个小时的学习时间,每天学习内容不宜超过两个问题。一、30以内的两个两位数乘积的心算速算1、两个因数都在20以内任意两个20以内的两个两位数的积,都可以将其中一个因数的”尾数”移加到另一个因数上,然后补一个0,再加上两“尾数”的积。例如:11×11=120+1×1=12112×13=150+2×3=15613×13=160+3×3=16914×16=200+4×6=22416×18=240+6×8=2882、两个因数分别在10至20和20至30之间对于任意这样两个因数的积,都可以将较小的一个因数的“尾数”的2倍移加到另一个因数上,然后补一个0,再加上两“尾数”的积。例如:22×14=300+2×4=30823×13=290+3×3=29926×17=400+6×7=44228×14=360+8×4=39229×13=350+9×3=3773、两个因数都在20至30之间对于任意这样两个因数的积,都可以将其中一个因数的“尾数”移加到另一个因数上求积,然后再加上两“尾数”的积。例如:22×21=23×20+2×1=46224×22=26×20+4×2=52823×23=26×20+3×3=52921×28=29×20+1×8=58829×23=32×20+9×3=667掌握此法后,30以内两个因数的积,都可以用心算快速求出结果。二、大于70的两个两位数乘积的心算速算对于任意这样两个因数的积,都可以用其中的一个因数将另一个因数补成100求积,再加上100分别与这两个因数差的积。例如:99×99=98×100+1×1=980197×98=95×100+3×2=950693×94=87×100+7×6=874288×93=81×100+12×7=818484×89=73×100+16×11=747678×79=57×100+22×21=616275×75=50×100+25×25=5625掌握上述两方法后,30以内两个因数的积和大于70的两个两位数的积,都可以用心算快速求出结果。三、大于50小于70的两个两位数乘积的心算速算对于任意这样两个因数的积,都可以将较小一个因数大于50的部分移加到另一个因数上求积,然后再加上这两个因数分别与50差的积。(运用一个因数乘以50等于将这个因数平分后乘以100)例如:51×51=26×100+1×1=260153×59=31×100+3×9=312754×62=33×100+4×12=334856×66=36×100+6×16=369666×66=41×100+16×16=4356四、大于30小于50的两个两位数乘积的心算速算对于任意这样两个因数的积,都可以用较小一个因数将另一个因数补成50求积,然后再加上50分别与这两个因数差的积。(运用一个因数乘以50等于将这个因数平分后乘以100)例如:49×49=24×100+1×1=240146×48=22×100+4×2=220844×42=18×100+6×8=184837×47=17×100+13×3=173932×46=14×100+18×4=1472五、乘法口算速算法乘法口算速算法是一种简便的,极易被掌握的乘法心算速算法,是将传统算法改为补整法,例如:49×47可改为50×46+1×3=2303,98×94可改为100×92+2×6=9212;移尾法,例如:51×53可改为50×54+1×3=2703,31×32可改为30×33+1×2=992;补商法,例如:84×24可改为100×20+4×4=2016等等,下面逐个介绍,并注意一个因数乘以50等于将这个因数平分后乘以100。1、补整法任意两个因数的积,都可以用其中的一个因数将另一个因数补成“整数”求积,然后再加上这个“整数”分别与这两个因数差的积。例如:19×19=18×20+1×1=36127×28=25×30+3×2=75646×48=44×50+4×2=220894×99=93×100+6×1=930687×98=85×100+13×2=852638×48=36×50+12×2=1824补整法比较适用于首接近尾之和不小于10的乘法,特别适用于两个因数都略小于20、30、50、100的乘法。2、移尾法任意两个因数的积,都可以将其中一个因数的”尾数”移加到另一个因数上求积,然后再加上这两个因数分别与这个“整数”差的积。例如:14×12=16×10+4×2=16822×23=25×20+2×3=50655×51=56×50+5×1=280562×54=66×50+12×4=334843×37=50×30+13×7=1591112×103=115×100+12×3=11536移尾法比较适用于首接近尾之和不大于10的乘法,特别适用于两个因数都略大于10、20、30、50、100的乘法。3、补商法令A、B、C、D为待定数字,则任意两个因数的积都可以表示成:AB×CD=(AB+A×D/C)×C0+B×D补商法特别适用于C能整除A×D的乘法。例如:23×13=29×10+3×3=29933×12=39×10+3×2=39646×11=50×10+6×1=50628×77=30×70+8×7=215682×55=90×50+2×5=451081×24=97×20+1×4=194476×36=90×30+6×6=2736当C不能整除A×D时,AB可加A×D/C的整数部分运算,余几就在原结果上再加几十。例如:84×65=90×60+40+4×5=546073×32=77×30+20+3×2=2336掌握此法后,130以内两个因数的积,基本上都可以用心算快速求出结果。六、接近100的两个数乘积的心算速算技巧对于计算任意两个大于90的两位数的乘积及任意两个小于110的三位数的乘积,运用巧妙的算速方法,人人都可以做到准确、快速、达到心算一口清。1、两个都小于110的三位数的乘积对于任意两个小于110的三位数的乘积,其积必定是五位数,且左边三位数总是等于其中一个因数加上另一个因数的“尾数”,右边两位数总是等于两“尾数”的积。例如:108×109=11772。左边三位数等于108+9=117,右边两位数等于8×9=72,同理:105×107=11342104×109=11336102×103=10506,右边两位数等于2×3=6,因为是两位,所以应写成06,同理:101×109=11009103×103=106092、任意两个大于90的两位数的乘积对于任意两个大于90的两位数的乘积,其积必定是四位数,且左边两位数总是等于80加上两个因数的“尾数”,右边两位数总是等于100分别与这两个因数差的积。例如:91×92=8372,左边两位数等于80+1+2=83,右边两位数等于(100-91)×(100-92)=72,同理:93×93=864994×94=883695×96=912099×98=9702,右边两位数等于1×2=2,因为是两位,所以应写成02,同理:99×99=980197×97=9409七、有趣的乘法数学运算奥妙无穷,激励着人们探索研究,请看有趣的乘法1、3、6、91、有趣的乘法111×11=121111×11=12211111×11=12221111×111=123211111×111=12332111111×111=12333211111×1111=123432111111×1111=12344321111111×1111=12344432111111×11111=123454321111111×11111=12345543211111111×11111=12345554321根据以上运算结果,通过分析、归纳、总结,得出:任意两个只含数字1的数(其中有一个数位数不超过9位)的积,其积中最大的数字是这两个因数中较小一个因数的位数,最大的数字的个数等于这两个因数的位数差(大减小)加1,最大的数字总是集中在中间,其两侧数字关于这些最大的数字对称。也就是积的最高位是1,向右逐位递增1至到最大数字,过最大的数字后右逐位递减1至到1。例如:111111111111111×111111111=12345678999999876543212、有趣的乘法333×33=1089333×33=109893333×33=109989333×333=1108893333×333=110988933333×333=110998893333×3333=1110888933333×3333=111098889333333×3333=11109988893、有趣的乘法6和966×66=4356666×66=439566666×66=439956666×666=4435566666×666=443955666666×666=443995566666×6666=4443555666669×6666=444395556666666×6666=444399555699×99=9801999×99=989019999×99=989901999×999=9980019999×999=998900199999×999=998990019999×9999=9998000199999×9999=999890001999999×9999=99989900016666666666×66666=4444399999555569999999999×99999=9999899999000016和9的规律请大家总结40以内的两个两位数乘积的心算速算1、两个因数分别在10至20和30至40之间对于任意这样两个因数的积,可以将较小的一个因数的“尾数”的3倍移加到另一个因数上,然后补一个0,再加上两“尾数”的积。例如:32×14=440+2×4=44833×13=420+3×3=42936×17=570+6×7=61238×14=500+8×4=53239×13=480+9×3=5072、两个因数分别在20至30和30至40之间对于任意这样两个因数的积,当较小的一个因数是偶数时,可以将较小的一个因数的“尾数”的1.5倍移加到另一个因数乘以20,再加上两“尾数”的积。例如:31×22=34×20+1×2=68232×24=38×20+2×4=76836×26=45×20+6×6=93638×28=50×20+8×8=1064对于任意这样两个因数的积,当较小的一个因数是奇数时,可以将较小的一个因数的“尾数”的1.5倍的整数部分移加到另一个因数乘以20,加上10,再加上两“尾数”的积。例如:31×21=32×20+10+1×1=65132×23=36×20+10+2×3=73633×25=40×20+10+3×5=82538×27=48×20+10+8×7=1026当较大的一个因数的“尾数”是“首数”的倍数时33×23=30×25+3×3=75936×27=30×31+6×7=97239×29=30×35+9×9=11313、两个因数都在30至40之间对于任意这样两个因数的积,都可以将其中一个因数的“尾数”移加到另一个因数上求积,然后再加上两“尾数”的积。例如:31×31=32×30+1×1=92132×33=35×30+2×3=105650以内的两个两位数乘积的心算速算1、两个因数分别在10至20和40至50之间对于任意这样两个因数的积,可以将较小的一个因数的“尾数”的4倍移加到另一个因数上,然后补一个0,再加上两“尾数”的积。例如:42×14=580+2×4=58843×13=550+3×3=55946×17=740+6×7=78248×14=640+8×4=67249×13=610+9×3=6372、两个因数分别在20至30和40至50之间对于任意这样两个因数的积,,可以将较小的一个因数的“尾数”的2倍移加到另一个因数乘以20,再加上两“尾数”的积。例如:41×22=45×20+1×2=90242×24=50×20+2×4=100846×26=58×20+6×6=119648×23=54×20+8×3=110443×
本文标题:乘法快算
链接地址:https://www.777doc.com/doc-1417604 .html