您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 其它办公文档 > 《简单的线性规划问题》教案
1《简单的线性规划问题》教学设计(人教A版高中课标教材数学必修5第三章第3.3.2节)祁东二中谭雪峰一、内容与内容解析本节课是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》中第3.3.2《简单的线性规划问题》的第一课时.本课内容是线性规划的相关概念和简单的线性规划问题的解法.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.本节内容是在学习了不等式和直线方程的基础上,利用不等式和直线方程的有关知识展开的.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出.简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成.本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力.二、教学目标一)、知识目标1.了解线性规划的意义、了解线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念.2.理解线性规划问题的图解法3.会用图解法求线性目标函数的最优解.二)、能力目标1.在应用图解法解题的过程中培养学生的观察能力、理解能力.2.在变式训练的过程中,培养学生的分析能力、探索能力.23.培养学生观察、联想、作图和理解实际问题的能力,渗透化归、数形结合的数学思想.三)、情感目标1.让学生体验数学来源于生活,服务于生活,品尝学习数学的乐趣.2.让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神.三、教学重点、难点重点:线性规划问题的图解法;寻求有实际背景的线性规划问题的最优解.难点:借助线性目标函数的几何含义准确理解线性目标函数在y轴上的截距与z最值之间的关系.四、学习者特征分析1.已经掌握用平面区域表示二元一次不等式(组)2.初步学会分析简单的实际应用问题3.能根据实际数据假设变量,并从中抽象出不等的线性约束条件并用相应的平面区域进行表示本节课学生在学习过程中可能遇到以下疑虑和困难:1.将实际问题抽象成线性规划问题;2.用图解法解线性规划问题中,为什么要将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题?如何想到要这样转化?3.数形结合思想的深入理解.五、教学与学法分析本节课以学生为中心,以问题为载体,采用启发、引导、探索相结合的教学方法.课堂中应注重创设师生互动、生生互动的和谐氛围,通过学生动手实践、动脑思考等方法探究数学知识获取直接经验,进而培养学生的思维能力和应用意识等.1.设置“问题”情境,激发学生解决问题的欲望;2.提供“观察、探索、交流”的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取直接经验.33.在教学中体现“重过程、重情感、重生活”的理念;让学生经历“学数学、做数学、用数学”的过程.指导学生做到“四会”:会疑、会议、会思、会变.4.在教学中重视学生的探索经历和发现新知的体验,使学生形成自己对数学知识的理解和有效的学习策略.六、文本教学与信息技术整合点分析根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,调动学生的学习兴趣,利用多媒体辅助教学,借助信息技术工具,以“几何画板”软件为平台,将目标函数与直线方程进行转化,通过直线的平行移动的演示,观察纵坐标的变化,直观生动地呈现图解法求最优解的过程,既加大课堂信息量,提高教学效率,同时让学生学会用“数形结合”思想方法建立起代数问题和几何问题间的密切联系.七、教学过程分析数学教学是数学活动的教学,我将整个教学过程分为五个环节:1.复习回顾:[幻灯片第2-4张]1)提问:如何作二元一次不等式表示的平面区域?直线定界;特殊点定域.2)巩固练习:画出下面不等式组所表示的平面区域.【设计意图】复习旧知,为本课的图解法解题热身准备.2.分析引例,形成概念,规范解答在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题……1)将实际生活问题转化为数学问题(数学建模)[幻灯片第5-8张]教师组织学生学习引例.[引例]:某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,该厂所有可能的日生产安排是什么?师生活动:通过教师引导,让学生正确理解题意,用不等式组表示问题中的5003xyxyx≥≥≤4限制条件及作出相应的平面区域,将实际问题转化为数学问题.(1)、教师提问:同学们,你们能用不等式组表示问题中的限制条件吗?引导学生设定未知数(设甲、乙两种产品分别生产x、y件),分析已知条件得到二元一次方程组:(2)、让学生画出不等式组所表示的平面区域.【设计意图】数学是现实世界的反映.通过引入学生感兴趣的实际生活问题,激发学生兴趣,使学生产生急于解决问题的内驱力,引发了学生的思考,同时师生之间通过互动复习旧知,培养学生从实际问题抽象出数学模型的能力.(3)、教师进一步提出新问题:若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?引导学生若设定工厂获得的利润为z,则易得z=2x+3y,此时问题转化为即求z的最大值的问题了.【设计意图】添加优化问题,定义目标函数,引出新问题.2)分析问题,形成概念[幻灯片第9-17张]师生活动:教师根据引题得出线性规划问题相关概念.(1)、就在学生兴趣顿起的时候,教师就此给出了相关概念:①上述问题中,不等式组是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又叫线性约束条件.线性约束条件除了用一次不等式表示外,有时也用一次方程表示.②欲求最大值或最小值的函数z=2x+3y叫做目标函数.由于z=2x+y又是x、y的一次解析式,所以又叫线性目标函数.③一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.④满足线性约束条件的解(x,y)叫做可行解.2841641200xyxyxy5⑤由所有可行解组成的集合叫做可行域.⑥使目标函数取得最大值或最小值的可行解,它们都叫做这个问题的最优解.(2)、引导学生理解,引题的问题就是一个线性规划问题.图中阴影部分(即可行域)的整点(坐标为整数的点)就代表所有可能的日生产安排.于是问题就转化为当点(x,y)在可行域运动时如何求z=2x+3y的最大值问题.3)探究交流,解决问题[幻灯片第18-20张](1)、教师提问:如何求z=2x+3y的最大值问题?先让学生自主探究,再分组讨论交流,然后试着这样引导学生:由于已经将x,y所满足的条件几何化了,你能否将式子z=2x+3y作某种几何解释?学生自然地想到它在几何上表示直线2x+3y-z=0.当z取不同的值时可得到一族平行直线.于是问题又转化为当这族直线与可行域有公共交点时,如何求z=2x+3y的最大值.(2)、这一问题对于部分学生仍有一定难度,教师再次提问:在直线2x+3y-z=0中,z是否与这直线的某种几何意义有关?学生讨论交流后得出:将直线2x+3y-z=0改写成斜截式233zyx,学生此时会明白直线2,33zyx它表示为斜率为2,3k截距3zb的直线,当z变化时,可以得到一组互相平行的直线,而且当截距3z最大时,z取最大值.于是问题又转化为当2x+3y-z=0这族直线与可行域有公共交点时,在可行域内找一个点,使直线经过此点时在y轴上的截距最大.接着让学生动手实践,用作图法找到点E并求出点E的坐标(4,2),而求出z的最大值为14,所以每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元.师生活动:教师引发学生思考变形目标函数,将z=2x+3y化成233zyx的形式,挖掘几何含义,作过原点直线23yx并进行平移,观察纵截距的最大值,教师利用多媒体辅助教学工具作动态演示平移确定最值,并有意强调解题步骤:画、作、移、求.【设计意图】:让学生自主探究,体验数学知识的发生、发展过程,体验转化和数形结合的思想方法,通过目标函数的不同变式,让学生熟悉求最值的方法,从而让学生更好地理解数学概念和方法,突出了重点,化解了难点.63.反思过程,提练方法[幻灯片第21张]教师引导学生归纳、提炼求解步骤:第一步:画——根据约束条件画出可行域;第二步:作——过原点作目标函数直线的平行直线0l;第三步:移——平移直线0l找出与可行域有公共点且纵截距最大或最小的直线,确定可行域内最优解的位置;第四步:求——解有关方程组求出最优解,将最优解代入目标函数求最值.4.模仿练习,强化方法,拓展题型[幻灯片第22-26张]为了更好地理解图解法解线性规划问题的内在规律,同时让学生掌握解决简单线性规划问题的基本步骤,让学生做下面这个练习:练习(教材例5)、营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪,1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费28元;而1食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?师生活动:教师引领学生理解题意,让学生领会用表格形式描述数据的直观性.让学生独立建立线性规划的数学模型,并正确设出变量,找好目标函数及约束条件后自行完成此题.由一位同学生展示自己的解题过程和结果.教师规范解题步骤和格式.1.分析:将已知数据列成表格食物/kg碳水化合物/kg蛋白质/kg脂肪/kgA0.1050.070.14B0.1050.140.07解:设每天食用x(kg)食物A,y(kg)食物B,总成本为z,那么0.1050.1050.075,0.070.140.06,0.140.070.06,0,0.xyxyxyxy①MNOxy7目标函数为2821zxy.二元一次不等式组①等价于775,7146,1476,0,0.xyxyxyxy②二元一次不等式组所表示的平面区域(图1),即可行域.考虑2821zxy,将它变形为4321zyx.这里4321zyx是斜率为43,随z变化的一组平行直线,21z是直线在y轴上的截距,当21z取最小值时,z的值最小.当然直线要与可行域相交,即在满足约束条件时目标函数2821zxy取得最小值.由图1可见,当直线2821zxy经过可行域上的点M时,截距21z最小,即z最小.解方程组775,1476.xyxy得M的坐标为17x,47y.所以282116zxy.答:每天食用食物A为17kg,食物B为47kg,能够满足日常饮食要求,又使花费最低,最低成本为16元.【设计意图】1).通过一道完整的简单线性规划问题,让学生掌握解决简单线性规划问题的基本步骤,培养学生的数学建模意识.同时进一步加深对图解法的认识.2).通过此题检测学生对已学知识的掌握情况,进一步培养学生的运算能力和准确作图的能力.3).展现线性规划的另一类型题(可行域不封闭、最优解为最小值),并与引例相比较,对比可行域封闭与不封闭、最优解为最大值与最小值两种情况的线性规划问题.师生活动:由教师帮助学生分析错解的原因,并提出问题.学生意识到可以把所有可能的解都求出来,进行比较即可.师生一起反思练习的求解过程.教师通过巡视发现错解的学生,帮助学生找8到错误的原因.并提出问题:有时若由于不可避免的误差带来错解,你如何解决?【设计意图】通过反思及寻求问题答案,让学生深入思考,培养学生科学严谨的学习态度和解决问题的能力.5.变式演
本文标题:《简单的线性规划问题》教案
链接地址:https://www.777doc.com/doc-1442921 .html