您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 青岛版数学四年级下册知识点归纳
第一单元:简易方程知识点1、等式的性质:等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。方程两边同时加、减、乘、除一个不等于0的数,左右两边仍然相等。2、方程和等式的关系:含有未知数的等式叫做方程,所有的方程都是等式,但等式不一定都是方程。如2+3=5是等式,但不是方程。注意:X=3此类也是方程。4、方程的解:使方程左右两边相等的未知数的值,叫做方程的解。例如:x=3是15-x=12的解5、解方程:求方程的解的过程叫做解方程。(方程的解是一个数,解方程是一个过程。)6、解方程需要注意什么?(1)一定要写‘解’字。(2)等号要上下对齐。典型例子:x+1.2=63.8x-x=0.567x+3x+26=742x-4×2.5=3.67、方程的检验过程:x+1.2=6解:x+1.2-1.2=6-1.2x=4.8方程左边=x+1.2=4.8+1.2=6=方程右边所以,x=4.8是方程的解。8、列方程解应用题列方程解应用题的步骤:(1)弄清题意,找出未知数,用x表示。(2)分析,找出数量之间的相等关系,列方程。例如:梨树比苹果树的3倍少15棵。可以表示成“苹果树的棵树×3—15=梨树的棵数”.(3)解方程。(4)检验方程,写出答案。常见列方程解应用题的类型:(1)、和倍应用题:题中告诉我们两个数的和以及这两个数的倍数关系,让我们求这两个数个是多少。这种题称和倍问题。例如:兄妹两人共有32本书,哥哥的本数是妹妹的3倍,两人各有多少本书?解:设妹妹有x本,哥哥有3x本。3x+x=324x=324x÷4=32÷4x=83x=3×8=24答:妹妹有8本书,哥哥有24本书。(2)、差倍应用题:题中告诉我们两个数的差与这两个数的倍数关系,求这两个数各是多少,这类问题称为差倍问题。例如:同学们去植树,杨树棵树是柳树的4倍,柳树棵树比杨树少75棵,杨树、柳树各植多少棵?解:设柳树植x棵,杨树是4x棵,4x-x=75(4-1)x=753x=753x÷3=75÷3x=254x=4×25=100或(75+25=100)答:植杨树100棵,植柳树25棵。(3)、根据公式列方程:如:三角形的面积=底×高÷2如果已知底和高,求三角形的面积,可以直接用公式计算;如果已知面积和高求底,一般设底为x,列出方程解答如:已知一个三角形的面积是24平方分米,高是12分米,求它的底。解:设这个三角形的底是x分米12x÷2=24......(4)根据一般的等量关系列方程一般来说,比(标准量)多,或者是(标准量)的几倍的题,如果标准量是未知数,则列方程解答,否则需要逆向思维,容易出错。如:食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?根据“比运来的面粉的3倍少30千克”可知面粉重量为标准量,且未知,可设面粉重量为x千克,列方程为:3x-30=150,如果比(标准量)多,或者是(标准量)的几倍的题,标准量已知,则没必要列方程解答。如:校园里有杨树18棵,柳树比杨树多8棵,柳树有多少棵?可以直接列式:18+8=26(棵)另外,30-3x=21,24÷x=1.2,这类-x或÷x的方程的解法小学阶段没有学习,因此,列方程时,尽量不要列成此类。第二单元多边形面积知识点归纳1、长方形面积=长×宽字母公式:s=ab长方形周长=(长+宽)×2字母公式:c=(a+b)×2(长=周长÷2-宽;宽=周长÷2-长)2、正方形面积=边长×边长字母公式:s=a²或者s=a×a正方形周长=边长×4字母公式:c=4a或者c=a×43、平行四边形面积=底×高字母公式:s=ah★等底等高的平行四边形面积相等。4、三角形面积=底×高÷2字母公式:s=ah÷2(底=面积×2÷高;高=面积×2÷底)★等底等高的三角形面积相等。★等底等高的三角形和平行四边形面积关系:等底等高的平行四边形面积是三角形面积的2倍;等底等高的三角形面积是平行四边形面积的一半。5、梯形面积=(上底+下底)×高÷2字母公式:s=(a+b)×h÷26、计算圆木、钢管等的根数:(顶层根数+底层根数)×层数÷27、组合图形:转化成已学的简单图形,通过加、减进行计算。8、有关规律:★在平行四边形里画一个最大的三角形,这个三角形的面积等于这个平行四边形面积的一半。★用细木条钉成一个长方形框架,如果把他拉成一个平行四边形,则它的周长不变,面积变小了,因为底不变,高变小了;如果将平行四边形框架拉成一个长方形,则他们的周长不变,面积变大了。★三角形和平行四边形面积相等时,若高相等,则三角形的底是平行四边形的2倍。★三角形和平行四边形的面积相等时,若底相等,则三角形的高是平行四边形的2倍。★三角形和平行四边形等底等高时,则三角形的面积是平行四边形的一半,平行四边形的面积是三角形的2倍。★在直角三角形中,斜边最长。第三单元因数与倍数1.因数、倍数概念:如果a×b=c(a、b、c都是不为0的整数)我们就说a和b都是c的因数,c是a的倍数也是b的倍数。倍数和因数是相互依存的。2.一个数的因数个数是有限的,最小的因数是1,最大的因数是它本身。一个数的倍数个数是无限的,最小倍数是它本身,一个数没有最大的倍数。3.2、3、5倍数的特征。(1)2的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数,是2的倍数的数叫做偶数;不是2的倍数的数叫做奇数。(2)3的倍数的特征:一个数各位数上的和是3的倍数这个数是3的倍数。(3)个位上是0、5的数都是5的倍数。4.质数和合数。(1)一个数,如果只有1和它本身两个因数,这样的数叫做质数(素数)。最小的质数是2。(2)一个数,除了1和它本身还有别的因数,这样的因数叫做合数。最小的合数是4,合数至少有三个因数。(3)1既不是质数,也不是合数。5.质因数和分解质因数。(1)每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。(2)把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例:30=2×3×56.最大公因数和最小公倍数。(1)几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数。(2)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。7.互质数:公因数只有1的两个数,叫做互质数。8.50以内质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47第四单元认识正、负数1、除0外,不带“—”号的数是正数。(像:7,+5,……)带“—”号的数是负数。(像:—3,—155,……)2、0既不是正数,也不是负数。正数都大于0,负数都小于0,正数都大于负数。3、描述具有相反意义的量,可以用正、负数。第五单元分数的意义和性质分数的产生:在进行测量、分物或计算时,不能正好得到整数的结果分数的意义分数与意义:把单位1平均分成若干份,表示这样的一份或几份的数分数与除法:分子(被除数),分母(除数),分数值(商)真分数:分子比分母小的分数(真分数小于1)真分数与假分数假分数:分子比分母大或相等的分数(假分数大于1或等于1).带分数:分子不是分母倍数的假分数(整数部分和真分数)假分数化带分数、整数(分子除以分母,商作整数部分余数作分子)分数的基本性质:分数的分子和分母同时乘或除以相同的数(0分数的基本性质除外),分数的大小不变。最大公因数约分求最大公因数(列举法、短除法)最简分数:分子和分母只有公因数1的分数(分子分母互质的分数)约分及其方法:利用分数的基本性质约分,一般要约成最简分数最小公倍数最小公倍数求最小公倍数(列举法、短除法)分数比大小(通分成同分母分数、化成小数)小数化分数:小数化成分母是10、100、1000等的分数再化简分数和小数的互化分数化小数:分子除以分母(除不尽的一般保留三位小数)1、分数单位:把单位“1”平均分成若干份,表示其中一份的数2、最简分数的分母只含有质因数2和5,这个分数一定能化成有限小数。第八单元统计1.条形统计图:可以清楚的看出数量的多少统计2.折线统计图:不仅可以看出数量的多少,还可以看出数量的增减变化情况
本文标题:青岛版数学四年级下册知识点归纳
链接地址:https://www.777doc.com/doc-1456777 .html