您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 九年级数学一元二次方程-二次函数的应用测试题(含答案)
1九年级数学一元二次方程与二次函数练习题一、选择题:1.下列哪一个函数,其图形与x轴有两个交点?()A.y=17(x83)22274B.y=17(x83)22274C.y=17(x83)22274D.y=17(x83)222742.已知二次函数cbxaxy2的y与x的部分对应值如下表:x…1013…y…3131…则下列判断中正确的是()A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x=4时,y>0D.方程02cbxax的正根在3与4之间3.某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50mB.100mC.160mD.200m4.向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第8秒B.第10秒C.第12秒D.第15秒5.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下列函数关系式:61t5h2)(,则小球距离地面的最大高度是()A.1米B.5米C.6米D.7米6.已知抛物线mxmxy)1(52与x轴两交点在y轴同侧,它们的距离的平方等于2549,则m的值为()[来A、-2B、12C、24D、-2或24[来源:Z_xx_k.C7.如下图,从地面竖立向上抛出一个小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为2530tth,那么小球从抛出至回落到地面所需要的时间是:()(A)6s(B)4s(C)3s(D)2s8.某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角2坐标系,水在空中划出的曲线是抛物线y=-x2+4(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米(第7题)(第8题)9.如图,点C、D是以线段AB为公共弦的两条圆弧的中点,AB=4,点E、F分别是线段CD,AB上的动点,设AF=x,AE2-FE2=y,则能表示y与x的函数关系的图象是()10.如图,等腰Rt△ABC(∠ACB=90º)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()二.填一填11、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是cm2.12.某种火箭被竖直向上发射时,它的高度h(m)与时间t(s)的关系可以用公式h=-5t2+150t+10表示.经过______s,火箭达到它的最高点.Oxy44A.Oxy44B.Oxy44C.Oxy44D.(第9题)CDEFAB313.已知二次函数2yaxbxc的图象与x轴交于点(20),、1(0)x,,且112x,与y轴的正半轴的交点在(02),的下方.下列结论:①420abc;②0ab;③20ac;④210ab.其中正确结论的个数是个.14.出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,则当x=______元时,一天出售该种手工艺品的总利润y最大.15.小颖同学想用“描点法”画二次函数2(0)yaxbxca的图象,取自变量x的5个值,分别计算出对应的y值,如下表:x…21012…y…112125…由于粗心,小颖算错了其中的一个y值,请你指出这个算错的y值所对应的x.16.小汽车刹车距离s(m)与速度v(km/h)之间的函数关系式为21001vs,一辆小汽车速度为100km/h,在前方80m处停放一辆故障车,此时刹车有危险(填“会”或“不会”).17.如下图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.18.如上图,在ABC中,90B,12mmAB,24mmBC,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过______秒,四边形APQC的面积最小.三、解答题:19.某商品现在的售价为每件35元.每天可卖出50件.市场调查反映:如果调整价格.每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少?420.已知:如图在Rt△ABC中,斜边AB=5厘米,BC=a厘米,AC=b厘米,a>b,且a、b是方程2(1)40xmxm的两根。⑴求a和b的值;⑵CBA与ABC开始时完全重合,然后让ABC固定不动,将CBA以1厘米/秒的速度沿BC所在的直线向左移动。①设x秒后CBA与ABC的重叠部分的面积为y平方厘米,求y与x之间的函数关系式,并写出x的取值范围;②几秒后重叠部分的面积等于83平方厘米?21.某中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若平行于墙的一边的长为y米,直接写出y与x之间的函数关系式及其自变量x的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x的取值范围.22.我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润216041100Px(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通ABCMA'B'C'5车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润299294101001601005Qxx(万元)⑴若不进行开发,求5年所获利润的最大值是多少?⑵若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?⑶根据⑴、⑵,该方案是否具有实施价值?23.用长度一定的不锈钢材料设计成外观为矩形的框架(如图123中的一种).设竖档AB=x米,请根据以上图案回答下列问题:(题中的不锈钢材料总长度均指各图中所有黑线的长度和,所有横档和竖档分别与AD、AB平行)(1)在图1中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD的面积为3平方米?(2)在图2中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD的面积S最大?最大面积是多少?(3)在图3中,如果不锈钢材料总长度为a米,共有n条竖档,那么当x为多少时,矩形框架ABCD的面积S最大?最大面积是多少?624.图1所示的遮阳伞,伞炳垂直于水平地面,起示意图如图2.当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开。已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米.BC=2.0分米。设AP=x分米.(1)求x的取值范围;(2)若∠CPN=60度,求x的值;(3)设阳光直射下伞的阴影(假定为圆面)面积为y,求y与x的关系式(结构保留)25.孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线2(0)yaxa的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O,两直角边与该抛物线交于A、B两点,请解答以下问题:(1)若测得22OAOB(如图1),求a的值;(2)对同一条抛物线,孔明将三角板绕点O旋转到如图2所示位置时,过B作BF⊥x轴于点F,测得OF=1,写出此时点B的坐标,并求点A的横坐标...;(3)对该抛物线,孔明将三角板绕点O旋转任意角度时惊奇地发现,交点A、B的连线段总经过一个固定的点,试说明理由并求出该点的坐标.7参考答案一、选择题二、填空题:11.12.512.1513.414.415.216.不会17.2118.3三、解答题19.设每件商品降价x元.每天的销售额为y元根据题意,每天的销售额(35)(502)(035)yxxx,配方,得22(5)1800yx,∴当x=5时,y取得最大值1800.答:当每件商品降价5元时,可使每天的销售额最大,最大销售额为l800元20.⑴a=4,b=3⑵①y=63832xx(0x4)②经过3秒后重叠部分的面积等于83平方厘米。21.(1)y=30-2x(6≤x<15)(2)设矩形苗圃园的面积为S则S=xy=x(30-2x)=-2x2+30x∴S=-2(x-7.5)2+112.5由(1)知,6≤x<15∴当x=7.5时,S最大值=112.5即当矩形苗圃园垂直于墙的边长为7.5米时,这个苗圃园的面积最大,最大值为112.5(3)6≤x≤1122.⑴当x=60时,P最大且为41,故五年获利最大值是41×5=205万元.⑵前两年:0≤x≤50,此时因为P随x增大而增大,所以x=50时,P值最大且为40万元,所以这两年获利最大为40×2=80万元.后三年:设每年获利为y,设当地投资额为x,则外地投资额为100-x,所以y=P+Q=216041100x+2992941601005xx=260165xx=2301065x,表明x=30时,y最大且为1065,那么三年获利最大为1065×3=3495万元,故五年获利最大值为80+3495-50×2=3475万元.⑶有极大的实施价值.23.(1)当不锈钢材料总长度为12米,共有3条竖档时,BC==4-x,∴x(4-x)=3.解得,x=1或3.题号12345678910答案DDCBCCADCA8(2)当不锈钢材料总长度为12米,共有4条竖档时,BC=1243x,矩形框架ABCD的面积S=x·1243x=21243xx.当x=32=时,S=3.∴当x=时时,矩形框架ABCD的面积S最大,最大面积为3平方米.(3)当不锈钢材料总长度为a米,共有n条竖档时,BC=123nx,矩形框架ABCD的面积S=x·123nx=2123xnx.当x=6n=时,S=12n∴当x=6n时,矩形框架ABCD的面积S最大,最大面积为12n平方米24.(1)因为BC=2,AC=CN+PN=12,所以AB=12-2=10;所以x的取值范围是010x(2)因为CN=PN,∠CPN=60°,所以三角形PCN是等边三角形.所以CP=6所以AP=AC-PC=12-6=6;即当∠CPN=60°时,x=6分米(3)连接MN、EF,分别交AC与0、H,因为PM=PN=CM=CN,所以四边形PNCM是菱形。所以MN与PC互相垂直平分,AC是∠ECF的平分线1260.522PCxPOx在RtMOPV中,PM=6,222226(60.5)60.25MOPMxxx又因为CE=CF,AC是∠ECF的平分线,所以EH=HF,EF垂直AC。因为∠ECH=∠MCO,∠EHC=∠MOC=90°,所以COMCEHV:V,所以MO/EH=CM/CE所以226()()18MOEM;所以22299(60.25)EHMOxx;所以229(60.25)yEHxx25.(1)设线段AB与
本文标题:九年级数学一元二次方程-二次函数的应用测试题(含答案)
链接地址:https://www.777doc.com/doc-1501143 .html