您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 利用速度图象分析带电粒子在交变电场中的运动
1利用速度图象分析带电粒子在交变电场中的运动带电粒子在交变电场中运动的情况比较复杂,由于不同时段受力情况不同、运动情况也就不同,若按常规的分析方法,一般都较繁琐,较好的分析方法就是利用带电粒子的速度图象来分析。在画速度图象时,要注意以下几点:1.带电粒子进入电场的时刻;2.速度图象的斜率表示加速度,因此加速度相同的运动一定是平行的直线;3.图线与坐标轴的围成的面积表示位移,且在横轴上方所围成的面积为正,在横轴下方所围成的面积为负;4.注意对称和周期性变化关系的应用;5.图线与横轴有交点,表示此时速度反向,对运动很复杂、不容易画出速度图象的问题,还应逐段分析求解。下面就举几例利用速度图象解决带电粒子在交变电场中的运动。一、交变电场按矩形方波规律变化例1如图1所示,A、B是一对平行的金属板,在两板间加上一周期为T的交变电压U,A板电势UA=0,B板的电势UB随时间发生周期性变化,规律如图2所示,现有一电子从A板上的小孔进入两极板间的电场区内,设电子的初速度和重力的影响均可忽略。A.若电子是在t=0时刻进入的,它将一直向B板运动B.若电子是在t=T/8时刻进入的,它可能时而向B板运动,时而向A板运动,最后打在B板上C.若电子是在t=3T/8时刻进入的,它可能时而向B板运动,时而向A板运动,最后打在B板上D.若电子是在t=T/2时刻进入的,它可能时而向B板运动,时而向A板运动【触类旁通】(2011·安徽)如下图所示,两平行正对的金属板A、B间加有如图(b)所示的交变电压,一重力可忽略不计的带正电粒子被固定在两板的正中间P处.若在t0时刻释放该粒子,粒子会时而向A板运动,时而向B板运动,并最终打在A板上,则t0可能属于的时间段是()2【例2】如图甲所示,两个平行金属板P、Q正对竖直放置,两板间加上如图乙所示的交变电压.t=0时,Q板比P板电势高U0,在两板的正中央M点有一电子在电场力作用下由静止开始运动(电子所受重力可忽略不计),已知电子在0-4t0时间内未与两板相碰.则电子速度方向向左且速度最大的时刻是()A.t=t0B.t=2t0C.t=3t0D.t=4t0例3如图6所示,是一个匀强电场的电场强度随时间变化的图象,在这个匀强电场中有一个带电粒子,在t=0时刻由静止释放,若带电粒子只受电场力作用,则电场力的作用和带电粒子的运动情况是()A.带电粒子将在电场中做有往复但总体上看不断向前的运动A.0<t0<T4B.T2t03T4C.3T4t0TD.T<t0<9T83B.0~3s内,电场力的冲量为零,电场力做功不等于零C.3s末带电粒子回到原出发点D.0~4s内,电场力的冲量不等于零,而电场力做的功却为零二、交变电场按正弦(或余弦)规律变化例4在平行板电容器的正中央有一电子处于静止状态,第一次电容器极板上加的电压是u1=Umsinωt,第二次极板上加的电压是u2=Umcosωt,那么在电场力的作用下(假设交变电流的频率很高,极板间的距离较宽)A.两次电子都做单向直线运动B.两次电子都做振动C.第一次电子做单向直线运动,第二次电子做振动D.第一次电子做振动,第二次电子做单向直线运动三、交变电场中极短时间下的场的模型【例2】如图所示,在真空中速度为v0=6.4×107m/s的电子束连续地射入两平行极板之间.极板长度为l=8.0×10-2m,间距为d=5.0×10-3m.两极板不带电时,电子束将沿两极板之间的中线通过.在两极板上加一个50Hz的交变电压U=U0sinωt,如果所加电压的最大值U0超过某一值UC时,将开始出现以下现象:电子束有时能通过两极板,有时间断,不能通过.求:(1)UC的大小;(2)U0为何值才能使通过的时间(Δt)通跟间断的时间(Δt)断之比为(Δt)通∶(Δt)断=2∶1.四.示波管原理1(2011·安徽)图(a)为示波管的原理图.如果在电极YY′之间所加的电压按图(b)所示的规律变化,在电极XX′之间所加的电压按图(c)所示的规律变化,则在荧光屏上会看到的图形是()42.下图是示波管的原理图。它由电子枪、偏转电极(XX´和YY´)、荧光屏组成。管内抽成真空。给电子枪通电后,如果在偏转电极XX´和YY´上都没有加电压,电子束将打在荧光屏的中心O点,在那里产生一个亮斑。下列说法正确的是()A.要想让亮斑沿OY向上移动,需在偏转电极YY´上加电压,且Y´比Y电势高B.要想让亮斑移到荧光屏的右上方,需在偏转电极XX´、YY´上加电压,且X比X´电势高、Y比Y´电势高、C.要想在荧光屏上出现一条水平亮线,需在偏转电极XX´上加特定的周期性变化的电压(扫描电压)—+YY´X´X电子枪荧光屏偏转电极XX´Y´Y亮斑5D.要想在荧光屏上出现一条正弦曲线,需在偏转电极XX´上加适当频率的扫描电压、在偏转电极YY´上加按正弦规律变化的电压1.在两金属板(平行)分别加上如图2—7—1中的电压,使原来静止在金属板中央的电子有可能图2—7—12.有一个电子原来静止于平行板电容器的中间,设两板的距离足够大,今在t=0开始在两板间加一个交变电压,使得该电子在开始一段时间内的运动的v—t图线如图2—7—2(甲)所示,则该交变电压可能是图2—7—2(乙)图2—7—2(乙)3.一个匀强电场的电场强度随时间变化的图象如图2—7—3所示,在这个匀强电场中有一个带电粒子,在t=0时刻由静止释放,若带电粒子只受电场力的作用,则电场力的作用和带电粒子的运图2—7—2(甲)6图2—7—3A.B.0~3s内,电场力的冲量等于0,电场力的功亦等于0C.3sD.2s~4s内电场力的冲量不等于0,而电场力的功等于04.一束电子射线以很大恒定速度v0射入平行板电容器两极板间,入射位置与两极板等距离,v0的方向与极板平面平行.今以交变电压U=Umsinωt加在这个平行板电容器上,则射入的电子将在两极板间的某一区域内出现.图2—7—4图2—7—45.图2—7—5中A、B是一对中间开有小孔的平行金属板,两小孔的连线与金属板面相垂直,两极板的距离为l,两极板间加上低频交变电流.A板电势为零,B板电势U=U0cosωt,现有一电子在t=0时穿过A板上的小孔射入电场,设初速度和重力的影响均可忽略不计,则电子在两极板间可能图2—7—5A.以ABB.时而向B板运动,时而向A板运动,但最后穿出BC.如果ω小于某个值ω0,l小于某个值l0,电子一直向B板运动,最后穿出BD.一直向B板运动,最后穿出B板,而不论ω、l二、填空题6.如图2—7—6(甲)所示,在两块相距d=50cm的平行金属板A、B间接上U=100V的矩形交变电压,(乙)在t=0时刻,A板电压刚好为正,此时正好有质量m=10-17kg,电量q=10-16C的带正电微7粒从A板由静止开始向B板运动,不计微粒重力,在t=0.04s时,微粒离A板的水平距离是______.图2—7—67.如图2—7—7所示,水平放置的平行金属板下板小孔处有一静止的带电微粒,质量m,电量-q,两板间距6mm,所加变化电场如图所示,若微粒所受电场力大小是其重力的2倍,要使它能到达上极板,则交变电场周期T至少为_______.图2—7—7三、计算题(共638.(15分)N个长度逐个增大的金属圆筒和一个靶,沿轴线排成一串,如图2—7—8所示(图中只画出了6个圆筒做为示意).各筒和靶相间的接到频率为f,最大电压为U的正弦交流电源的两端.整个装置放在真空容器中,圆筒的两底面中心开有小孔,有一质量为m,带电量为q的正离子沿轴线射入圆筒,并将在圆筒间及圆筒与靶间的缝隙处受到电场力的作用而加速(圆筒内都没有电场),缝隙的宽度很小,离子穿过缝隙的时间可以不计.已知离子进入第一个圆筒左端的速度为v1,且此时第一、二两个圆筒间的电势差φ1-φ2=-φ,为使打到靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶上的离子动能.图2—7—889.(15分)如图2—7—9(甲)为平行板电容器,板长l=0.1m,板距d=0.02m.板间电压如图(乙)示,电子以v=1×107m/s的速度,从两板中央与两板平行的方向射入两板间的匀强电场,为使电子从板边缘平行于板的方向射出,电子应从什么时刻打入板间?并求此交变电压的频率.(电子质量m=9.1×10-31kg,电量e=1.6×10-19C)图2—7—910.(15分)如图2—7—10甲所示,A、B为两块距离很近的平行金属板,板中央均有小孔.一电子以初动能EkO=120eV,从A板上的小孔O不断地垂直于板射入A、B之间,在B板的右侧,偏转板M、N组成一匀强电场,板长L=2×10-2m,板间距离d=4×10-3m;偏转板加电压为U2=20V,现在A、B间加一个如图乙所示的变化电压U1,在t=2s时间内,A板电势高于B板,则在U1随时间变化的第一周期内.图2—7—10(1)在哪段时间内,电子可从B板上小孔O(2)在哪段时间内,电子能从偏转电场右侧飞出?(由于A、B两板距离很近,可以认为电子穿过A、B911.(18分)示波器是一种多功能电学仪器,可以在荧光屏上显示出被检测的电压波形.它的工作原理等效成下列情况:(如图2—7—11所示)真空室中电极K发出电子(初速不计),经过电压为U1的加速电场后,由小孔S沿水平金属板,A、B间的中心线射入板中.板长L,相距为d,在两板间加上如图乙所示的正弦交变电压,前半个周期内B板的电势高于A板的电势,电场全部集中在两板之间,且分布均匀.在每个电子通过极板的极短时间内,电场视作恒定的.在两极板右侧且与极板右端相距D处有一个与两板中心线垂直的荧光屏,中心线正好与屏上坐标原点相交.当第一个电子到达坐标原点O时,使屏以速度v沿-x方向运动,每经过一定的时间后,在一个极短时间内它又跳回到初始位置,然后重新做同样的匀速运动.(已知电子的质量为m,带电量为e,不计电子重力)图2—7—11(1)电子进入AB(2)要使所有的电子都能打在荧光屏上,图乙中电压的最大值U0(3)要使荧光屏上始终显示一个完整的波形,荧光屏必须每隔多长时间回到初始位置?计算这个波形的最大峰值和长度.在如图2—7—11丙所示的x-y坐标系中画出这个波形.10参考答案一、1.BC2.AB3.BCD4.ACD不同时刻入射的电子在不同瞬时电压下,沿不同抛物线做类平抛运动,其轨迹符合方程y=dmveU202x2(U为变化电压),x轴正向为初速v0方向,y轴的正方向垂直于初速v0向上或向下.电压低时从板间射出,电压高时打在板上,电子在板间出现的区域边界应为开口沿纵坐标方向的抛物线.5.AC二、6.0.4m7.6.0×10-2s三、8.由于金属筒对电场的屏蔽作用,使离子进入筒后做匀速直线运动,只有当离子到达两筒的缝隙处才能被加速.这样离子在筒内运动时间为t=fT212(T、f分别为交变电压周期、频率)①,设离子到第1个筒左端速度为v1,到第n个筒左端速度vn,第n个筒长为Ln,则Ln=vn·t从速度v1加速vn经过了(n-1)次加速,由功能关系有:21mvn2=21mv12+(n-1)·qU③联立得Ln=mnqUvf)1(22121Ekn=221nmv=21mv12+(n-1)qU令n=N,则得打到靶上离子的最大动能21mvN2=21mv12+(N-1)qU9.电子水平方向匀速直线运动,竖直方向做变加速运动.要使电子从板边平行于板方向飞出,则要求电子在离开板时竖直方向分速度为0,并且电子在竖直方向应做单向直线运动向极板靠近.此时电子水平方向(x方向)、竖直方向(y)方向的速度图线分别如图所示.电子须从t=n2T(n=0,1,2,…)时刻射入板间,且穿越电场时间t=kT(k=1,2…)①,而电子水平位移l=vt竖直位移21d=2120)2(TmdeU·2k三式联立得,T=leUmvd022=2.5×10-9s,k=4,故f=1/T=4×108Hz,且k=4.10.(1)0~2s电子能从O′射出,动能必须足够大,由功能关系得U1e<Ek0U1<120V所以当t<0.6或t>1.4时,粒子可由B板小孔O′射出.11(2)电子进
本文标题:利用速度图象分析带电粒子在交变电场中的运动
链接地址:https://www.777doc.com/doc-1503618 .html