您好,欢迎访问三七文档
2.2.2指数函数教案教学目标:1、知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。2、能力目标:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。3、情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。教学重点、难点:1、重点:指数函数的图像和性质2、难点:底数a的变化对函数性质的影响,突破难点的关键是利用多媒体动感显示,通过颜色的区别,加深其感性认识。教学方法:引导观察发现教学法、比较法、讨论法教学过程:一、观察感受、事例引入1.问:上节课我们学习了指数的运算性质,今天我们来学习与指数有关的函数。首先什么是函数?(生:答略)2.函数关系主要是体现两个变量的关系。我们来考虑一个实际的例子:大家对“非典”应该并不陌生,它与其它的传染病一样,有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种。我们来看一种球菌的分裂过程:PPT演示:某种球菌分裂时,由1分裂成2个,2个分裂成4个,------。如果说我们引入两个变量x—分裂次数,y—细胞数目,请问我们现在能不能建立y关于x的函数的关系?我们发现分裂次数与细胞数目能够建立一种函数关系:y=2x,x∈N*3.还有这么一个故事:有人要走完一段路,第一次走这段路的一半,每次走余下路程的一半,请问最后能达到终点吗?PPT演示:如果说我们引入两个变量x—次数,y—剩下路程,请问我们现在能不能建立y关于x的函数的关系?我们发现次数与剩下的路程能够建立一种函数关系:y=(12)x,x∈N*4.学生分组讨论,培养观察能力问题:我们在前面学习了分数指数幂?请问大家刚才两个函数能不能输入其它非正整数的数呢?(PPT演示)因此,我们得到了这样两个函数:y=2x和y=(12)xx∈R问题:大家还能举出形式和刚才差不多的函数吗?(PPT演示)大家还能从这些特征中,概括出一个式子来表示它们吗?底数大于0且不同,指数均为xy=axx∈R这里的a可以取什么样的值?(PPT演示)a0且a≠1二、切实感受,推出定义(点题)一般地,函数y=ax(a>0且a≠1)叫做指数函数,其中x是自变量,其定义域为R。口答1:判断下列函数是否是指数函数?(PPT演示)1)y=2-x2)y=-0.5x3)y=3·2x4)y=x0.6三、深入理解,探究性质(多媒体展示,数形结合)我们已经知道了指数函数的形式了,那么下面让我们来探究它的性质,首先从图象开始!1、同一坐标系中分别作出以下函数的图像1)y=2x和y=(12)x2)y=2x和y=(13)x(列表、描点、连线)(PPT演示)2、函数性质:a10a1图象图像图像分布在一、二象限,与轴相交,落在轴的上方。都过点(0,1)特征第一象限的点的纵坐标都大于1;第二象限的点的纵坐标都大于0且小于1。第一象限的点的纵坐标都大于0且小于1;第二象限的点的纵坐标都大于1。从左向右图像逐渐上升。从左向右图像逐渐下降。性质(1)定义域:R(2)值域:(0,+∞)(3)过定点(0,1),即x=0时,y=1(4)x0时,y1;x0时,0y1(4)x0时,0y1;x0时,y1.(5)在R上是增函数(5)在R上是减函数例1、比较下列各题中两个值的大小:(1)1.52.5,1.53.2(2)0.5-1.2,0.5-1.5(3)1.50.3,0.81.2(PPT演示)学生讨论:比较大小问题的处理方法:1:看类型2:同底用单调性3:其它类型找中间量:ab,bc则ac例2、(1)已知3x≥30.5,求实数x的取值范围(2)已知0.2x25,求实数x的取值范围(PPT演示)这也是含变量的大小比较——单调性的应用学生讨论:小结:形如:af(x)ag(x)的不等式的解当a1时原不等式等价于:f(x)<g(x)当0a1时原不等式等价于:f(x)>g(x)例3、说明下列函数的图象指数函数y=2x的图象关系,并画出示意图:(1)y=2x-2(2)y=2x+2四、归纳小结1、本节课的主要内容是:指数函数的定义、图像和性质2、本节学习的重点是:掌握指数函数的图像和性质3、学习的关键是:弄清楚底数a变化对于函数值变化的影响。只有彻底弄清并掌握了指数函数的图像和性质,才能灵活运用性质解决实际问题。我们发现研究一个新函数要从:背景——基本特征——形成过程——基本性质——应用
本文标题:指数函数优秀教案
链接地址:https://www.777doc.com/doc-1504395 .html