您好,欢迎访问三七文档
1等比数列综合练习题一、选择题(每小题4分,共40分)1.已知等比数列}{na中1nnaa,且37283,2aaaa,则117aa()A.21B.23C.32D.22.已知等比数列}{na的公比为正数,且3a·9a=225a2a=1,则1a=()A.21B.22C.2D.23.在等比数列}{na中,,8,1685aa则11a()A.4B.4C.2D.24.等比数列na的前n项和为nS,已知2110mmmaaa,2138mS,则m()A.38B.20C.10D.95.设等比数列{na}的前n项和为nS,若63SS=3,则69SS=()(A)2(B)73(C)83(D)36.已知等比数列的首项为8,Sn是其前n项的和,某同学计算得到S2=20,S3=36,S4=65,后来该同学发现了其中一个数算错了,则该数为()A.S1B.S2C.S3D.S47.已知nS是公差不为0的等差数列na的前n项和,且421,,SSS成等比数列,则132aaa等于()A.4B.6C.8D.108.已知等比数列{}na的公比0q,其前n项的和为nS,则45Sa与54Sa的大小关系是()A.4554SaSaB.4554SaSaC.4554SaSaD.不确定9.已知等比数列aaSnannn则项和的前,612}{1的值为()2A.31B.21C.—31D.—2110.若na是等比数列,前n项和21nnS,则2222123naaaa()A.2(21)nB.21(21)3nC.41nD.1(41)3n二、填空题(每小题4分,共16分)11.已知数列1,a1,a2,4成等差数列,1,b1,b2,b3,4成等比数列,则221baa_______.12.已知等差数列{an},公差d0,431aaa,,成等比数列,则18621751aaaaaa=13.等比数列{na}的公比0q,已知2a=1,216nnnaaa,则{na}的前4项和4S=。14.在等比数列{}na中,12236,12,naaaaS为数列{}na的前n项和,则22010log(2)S.三、解答题(共44分,写出必要的步骤)15.(本小题满分10分)已知等比数列,83,12}{83aaan满足记其前n项和为.nS(1)求数列}{na的通项公式na;(2)若.,93nSn求16.(本小题满分10分)等比数列na的前n项和为nS,已知231,,SSS成等差数列.(1)求na的公比q;(2)若331aa,求nS.317.(本小题满分12分)在等比数列na中,,11a公比0q,设nnab2log,且.0,6531531bbbbbb(1)求证:数列nb是等差数列;(2)求数列nb的前n项和nS及数列na的通项公式;(3)试比较na与nS的大小.18.(本小题满分12分)已知等比数列na的公比1q,42是1a和4a的一个等比中项,2a和3a的等差中项为6,若数列nb满足2lognnba(n*N).(Ⅰ)求数列na的通项公式;(Ⅱ)求数列nnab的前n项和nS.4等比数列综合练习题参考答案一、选择题1.解析:2837aaaa,373713,2nnaaaaaa解得371,2aa,711732aaaa,故选D2.B解析:设公比为q,由已知得22841112aqaqaq,即22q,又因为等比数列}{na的公比为正数,所以2q,故211222aaq,选B。3.A4.C5.B解析:设公比为q,则36333(1)SqSSS=1+q3=3q3=2,于是63693112471123SqqSq6.C7.C8.A9.C10.D二、填空题11.2512.11813.15214.2011三、解答题15.解析:(1)设等比数列}{na的公比为q,则,83,12718213qaaqaa解得,21,481qa…………4分所以.)21(48111nnnqaa…………5分(2)])21(1[96211])21(1[481)1(1nnnnqqaS…………8分由.5,93])21(1[96,93nSnn解得得16.解析:(1)由题意有)(2)(2111111qaqaaqaaa,又0,01qa,故5.21q(2)由已知得.43)21(1211aaa从而].)21(1[38)21(1])21(1[4nnnS17.解析:(1)由已知qaabbnnnnloglog121为常数.故数列nb为等差数列,且公差为.log2qd(先求q也可)(2)因0log,11211aba,又263531bbbb,所以.05b由.291,404,22211513nnSdbdbbdbbn由*511212,221,164log1logNnaqaabqdnn.(3)因,0na当9n时,0nS,所以9n时,nnSa;又可验证2,1n是时,nnSa;8,7,6,5,4,3n时,nnSa.18.解:(Ⅰ)因为42是1a和4a的一个等比中项,所以214(42)32aa.由题意可得232332,12.aaaa因为1q,所以32aa.解得234,8.aa所以322aqa.故数列na的通项公式2nna.(Ⅱ)由于2lognnba(n*N),所以2nnnabn.231122232(1)22nnnSnn.①23121222(1)22nnnSnn.②①-②得231122222nnnSn12(12)212nnn.所以11222nnnSn
本文标题:等比数列基础练习题
链接地址:https://www.777doc.com/doc-1520146 .html