您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 2015年湖北省黄冈中学提前录取数学模拟试卷7
第1页(共26页)2015年湖北省黄冈中学提前录取数学模拟试卷(7)一、选择题(本大题共8小题,每小题4分,共32分.每小题恰有一个正确的答案,请将正确答案的代号填入题中相应的括号内1.(4分)计算1+2+22+23+…+22010的结果是()A.22011﹣1B.22011+1C.D.2.(4分)如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=1,BC=6.则⊙O的半径为()A.6B.13C.D.3.(4分)如图,表示阴影区域的不等式组为()A.B.C.D.4.(4分)已知点P的坐标是(,),这里a、b是有理数,PA、PB分别是点P到x轴和y轴的垂线段,且矩形OAPB的面积为,则P点可能出现的象限有()A.1个B.2个C.3个D.4个5.(4分)已知AC⊥BC于C,BC=a,CA=b,AB=c,下列选项中⊙O的半径为的是()第2页(共26页)A.B.C.D.6.(4分)如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为()A.+1B.C.D.7.(4分)点C是半径为1的半圆弧AB的一个三等分点,分别以弦AC、BC为直径向外侧作2个半圆,点D、E也分别是2半圆弧的三等分点,再分别以弦AD、DC、CE、BE为直径向外侧作4个半圆.则图中阴影部分(4个新月牙形)的面积和是()A.B.C.D.8.(4分)平面直角坐标系中,如果把横坐标、纵坐标都是整数的点叫做整点,那么函数的图象上整点的个数是()A.2个B.4个C.6个D.8个二、填空题(本大题共6小题,每小题4分,共24分.请将正确答案填在各小题后的横线上)9.(4分)若x,则=.10.(4分)若关于x的方程的解为正数,则a的取值范围是.第3页(共26页)11.(4分)有一组数满足a1=1,a2=2,a3﹣a1=0,a4﹣a2=2,a5﹣a3=0,a6﹣a4=2,…,按此规律进行下去,则a1+a2+a3+…+a100=.12.(4分)二次函数y=x2+2ax+a在﹣1≤x≤2上有最小值﹣4,则a的值为.13.(4分)已知实数a,b,c满足a+b+c=10,且,则的值是.14.(4分)已知抛物线经过点A(4,0).设点C(1,﹣3),请在抛物线的对称轴上确定一点D,使得|AD﹣CD|的值最大,则D点的坐标为.三、解答题(本大题共6小题,共64分.请写出解答过程)15.(12分)已知关于x的方程(m2﹣1)x2﹣3(3m﹣1)x+18=0有两个正整数根(m是正整数).△ABC的三边a、b、c满足,m2+a2m﹣8a=0,m2+b2m﹣8b=0.求:(1)m的值;(2)△ABC的面积.16.(10分)如图,已知圆内接四边形ABCD的对角线AC、BD交于点N,点M在对角线BD上,且满足∠BAM=∠DAN,∠BCM=∠DCN.求证:(1)M为BD的中点;(2).17.(10分)阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是.(结果可以不化简)第4页(共26页)18.(10分)随着经济的发展,尹进所在的公司每年都在元月一次性的提高员工当年的月工资.尹进2008年的月工资为2000元,在2010年时他的月工资增加到2420元,他2011年的月工资按2008到2010年的月工资的平均增长率继续增长.(1)尹进2011年的月工资为多少?(2)尹进看了甲、乙两种工具书的单价,认为用自己2011年6月份的月工资刚好购买若干本甲种工具书和一些乙种工具书,当他拿着选定的这些工具书去付书款时,发现自己计算书款时把这两种工具书的单价弄对换了,故实际付款比2011年6月份的月工资少了242元,于是他用这242元又购买了甲、乙两种工具书各一本,并把购买的这两种工具书全部捐献给西部山区的学校.请问,尹进总共捐献了多少本工具书?19.(12分)已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1.8元/千克,每次购买配料除需支付运输费236元外,还需支付保管费用,其标准如下:7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.(1)当9天购买一次配料时,求该厂的配料保管费用P是多少元?(2)当x天购买一次配料时,求该厂在这x天中用于配料的总支出y(元)关于x的函数关系式;(3)求多少天购买一次配料时,才能使该厂平均每天的总支出最少?(总支出=购买配料费+运输费+保管费)20.(10分)如图,点A为y轴正半轴上一点,A,B两点关于x轴对称,过点A任作直线交抛物线于P,Q两点.(1)求证:∠ABP=∠ABQ;(2)若点A的坐标为(0,1),且∠PBQ=60°,试求所有满足条件的直线PQ的函数解析式.第5页(共26页)第6页(共26页)2015年湖北省黄冈中学提前录取数学模拟试卷(7)参考答案与试题解析一、选择题(本大题共8小题,每小题4分,共32分.每小题恰有一个正确的答案,请将正确答案的代号填入题中相应的括号内1.(4分)(2015•黄冈中学自主招生)计算1+2+22+23+…+22010的结果是()A.22011﹣1B.22011+1C.D.【分析】可设其和为S,则2S=2+22+23+24+…+22010+22011,两式相减可得答案.【解答】解:设S=1+2+22+23+…+22010①则2S=2+22+23+…+22010+22011②②﹣①得S=22011﹣1.故选A.【点评】本题考查了整式的混合运算,解答本题的关键是设出和为S,并求出2S进行做差求解.2.(4分)(2011•兰州)如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=1,BC=6.则⊙O的半径为()A.6B.13C.D.【分析】延长AO交BC于D,接OB,根据AB=AC,O是等腰Rt△ABC的内心,推出AD⊥BC,BD=DC=3,AO平分∠BAC,求出∠BAD=∠ABD=45°,AD=BD=3,由勾股定理求出OB即可.【解答】解:过点A作等腰直角三角形BC边上的高AD,垂足为D,所以点D也为BC的中点.根据垂径定理可知OD垂直于BC.所以点A、O、D共线.∵⊙O过B、C,∴O在BC的垂直平分线上,∵AB=AC,圆心O在等腰Rt△ABC的内部,∴AD⊥BC,BD=DC=3,AO平分∠BAC,第7页(共26页)∵∠BAC=90°,∴∠ADB=90°,∠BAD=45°,∴∠BAD=∠ABD=45°,∴AD=BD=3,∴OD=3﹣1=2,由勾股定理得:OB==.故选C.【点评】本题主要考查对等腰三角形的性质和判定,等腰直角三角形的性质,三角形的内角和定理,勾股定理,垂线,垂径定理等知识点的理解和掌握,求出OD、BD的长是解此题的关键.3.(4分)(2015•黄冈中学自主招生)如图,表示阴影区域的不等式组为()A.B.C.D.【分析】根据图形即可判断阴影部分是由x=0,y=﹣2x+5,y=﹣x+三条直线围起来的区域,再根据一次函数与一元一次不等式的关系即可得出答案.【解答】解:∵x≥0表示直线x=0右侧的部分,2x+y≤5表示直线y=﹣2x+5左下方的部分,3x+4y≥9表示直线y=﹣x+右上方的部分,第8页(共26页)故根据图形可知:满足阴影部分的不等式组为:.故选D.【点评】本题考查了一次函数与一元一次不等式,属于基础题,关键是根据图形利用一次函数与一元一次不等式的关系正确解答.4.(4分)(2015•黄冈中学自主招生)已知点P的坐标是(,),这里a、b是有理数,PA、PB分别是点P到x轴和y轴的垂线段,且矩形OAPB的面积为,则P点可能出现的象限有()A.1个B.2个C.3个D.4个【分析】可由矩形面积入手,由点P的坐标可得其乘积为或﹣,进而求解即可得出结论.【解答】解:由题意得(+a)(+b)=①或(+a)(+b)=﹣②,由①得(ab+2)+(a+b﹣1)=0,则,解得或,同理由②得或,所以,P(+2,﹣1)或(﹣1,+2)或(﹣2,+1)或(+1,﹣2),P点出现在第一、二、四象限,故选C.【点评】本题主要考查了矩形的性质以及矩形与图形相结合的问题,能够熟练运用已学知识求解一些简单的图形结合问题.5.(4分)(2011•日照)已知AC⊥BC于C,BC=a,CA=b,AB=c,下列选项中⊙O的半径为的是()A.B.C.D.【分析】连接OE、OD,根据AC、BC分别切圆O于E、D,得到∠OEC=∠ODC=∠C=90°,证出正方形OECD,设圆O的半径是r,证△ODB∽△AEO,得出=,代入即可求出r=;设圆的半径是x,圆切AC于E,切BC于D,且AB于F,同样得到正方形OECD,根据a﹣x+b﹣x=c,求出x即可;设圆切AB于F,圆的半径是y,连接OF,则△BCA∽△OFA得出=,代入求出y即可.第9页(共26页)【解答】解:A、设圆的半径是x,圆切AC于E,切BC于D,切AB于F,如图(1)同样得到正方形OECD,AE=AF,BD=BF,则a﹣x+b﹣x=c,求出x=,故本选项错误;B、设圆切AB于F,圆的半径是y,连接OF,如图(2),则△BCA∽△OFA,∴=,∴=,解得:y=,故本选项错误;C、连接OE、OD,∵AC、BC分别切圆O于E、D,∴∠OEC=∠ODC=∠C=90°,∵OE=OD,∴四边形OECD是正方形,∴OE=EC=CD=OD,设圆O的半径是r,∵OE∥BC,∴∠AOE=∠B,∵∠AEO=∠ODB,∴△ODB∽△AEO,∴=,=,解得:r=,故本选项正确;从上至下三个切点依次为D,E,F;并设圆的半径为x;容易知道BD=BF,所以AD=BD﹣BA=BF﹣BA=a+x﹣c;第10页(共26页)又∵b﹣x=AE=AD=a+x﹣c;所以x=,故本选项错误.故选:C.【点评】本题主要考查对正方形的性质和判定,切线的性质,全等三角形的性质和判定,三角形的内切圆与内心,解一元一次方程等知识点的理解和掌握,能根据这些性质求出圆的半径是解此题的关键.6.(4分)(2012•济南)如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为()A.+1B.C.D.【分析】取AB的中点E,连接OE、DE、OD,根据三角形的任意两边之和大于第三边可知当O、D、E三点共线时,点D到点O的距离最大,再根据勾股定理列式求出DE的长,根据直角三角形斜边上的中线等于斜边的一半求出OE的长,两者相加即可得解.【解答】解:如图,取AB的中点E,连接OE、DE、OD,∵OD≤OE+DE,∴当O、D、E三点共线时,点D到点O的距离最大,此时,∵AB=2,BC=1,∴OE=AE=AB=1,DE===,∴OD的最大值为:+1.故选:A.第11页(共26页)【点评】本题考查了直角三角形斜边上的中线等于斜边的一半得到性质,三角形的三边关系,矩形的性质,勾股定理,根据三角形的三边关系判断出点O、E、D三点共线时,点D到点O的距离最大是解题的关键.7.(4分)(2015•黄冈中学自主招生)点C是半径为1的半圆弧AB的一个三等分点,分别以弦AC、BC为直径向外侧作2个半圆,点D、E也分别是2半圆弧的三等分点,再分别以弦AD、DC、CE、BE为直径向外侧作4个半圆.则图中阴影部
本文标题:2015年湖北省黄冈中学提前录取数学模拟试卷7
链接地址:https://www.777doc.com/doc-1651861 .html